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Abstract

Forecasting the density of returns is useful for many purposes in finance, such as risk manage-

ment activities, portfolio choice or derivative security pricing. Existing methods to forecast the den-

sity of returns either use prices of the asset of interest or option prices on this same asset. The latter

method needs to convert the risk-neutral estimate of the density into a physical measure, which is

computationally cumbersome. In this paper, we take the view of a practitioner who observes the

implied volatility under the form of an index, namely the recent OVX, to forecast the density of oil

futures returns for horizons going from 1 to 60 days. Using the recent methodology in Maheu and

McCurdy (2011) to compute density predictions, we compare the performance of time series models

using implied volatility and either daily or intra-daily futures prices. Our results indicate that models

based on implied volatility deliver significantly better density forecasts at all horizons, which is in

line with numerous studies delivering the same evidence for volatility point forecast.
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1 Introduction

We analyze empirically the information content of model-free implied volatility for forecasting the

density of WTI futures returns at horizons going from 1 to 60 days. Our methodology follows Maheu

and McCurdy (2011) who develop a bivariate time series model of volatility and returns that is relevant

to forecast the density of returns at multiple horizons. We evaluate the forecast accuracy of this model

using three different measures for the volatility, namely the realized volatility, the model-free implied

volatility (MFIV) and the volatility index computed using options on WTI oil futures (OVX) along with

density forecast from a simple EGARCH model. Our results indicate that predictions based on implied

volatilities are statistically better than those based on historical data at all horizons.

While the literature considering volatility point forecast for and comparing the information content

of option prices with high-frequency data and/or daily data (using GARCH or alternative parametric

or nonparametric models) is vast (see below), the question of forecasting the density of returns has

not received the same attention.1 This is quite surprising considering the importance of density pre-

diction. For instance, it allows value-at-risk computation (see Giot and Laurent (2003, 2004), Cabedo

and Moya (2003) and Huang et al. (2009) for the case of crude oil). In particular, Giot and Laurent

(2004) emphasize the role of intraday data to improve the estimation of the value-at-risk. Our re-

sults confirm that intraday data are valuable in improving the accuracy of density forecasts but that

forward-looking information in implied volatility leads to even better density predictions that may be

helpful in the context of estimating value-at-risk more accurately.

Our study deals with an energy time series for which the number of existing papers about volatility or

density forecast is obviously lower than for more classical assets. However, the WTI crude oil futures

contract is the most traded futures contract over the world. For instance, in some days, the front-

month futures contract exhibits more than 150,000 transactions and the total open interest for the

WTI futures has dramatically increased in recent years as highlighted in Tang and Xiong (2012) and

Hong and Yogo (2012) among others. This is also an input of utmost importance in asset allocation

through direct investment or commodity indexes. As such, an analysis of the density forecast accuracy

using various volatility measures for the WTI futures should be of interest both for academics and

1The literature on forecasting volatility is nicely surveyed in Poon and Granger (2003) and more recent developments can be
found in Andersen et al. (2006). These contributions consider the point forecast of volatility which is intuitively of central
interest for all finance-related activities. Christoffersen et al. (2012) also survey the literature on volatility forecasting with an
emphasize on the information extracted from option prices.
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practitioners.

Comparison of volatility forecast using risk-neutral vs. physical estimates has been a very active lit-

erature in recent years. Early contributions considering implied volatility include Harvey and Whaley

(1992), Day and Lewis (1992), Canina and Figlewski (1993), Jorion (1995), Christensen and Prabhala

(1998), Fleming (1998) and Poteshman (2000) among others. First attempts to model and forecast

volatility using intraday data are Taylor and Xu (1997), Martens (2002) and Andersen et al. (2003). As

could be expected, literature then investigated the relative performance of models dealing with in-

traday data with that of models using implied volatility: Blair et al. (2001), Martens and Zein (2004),

Koopman et al. (2005), Gospodinov et al. (2006), Becker et al. (2007), Giot and Laurent (2007) and

Han and Park (2013) are representative examples. The superiority of implied measures is generally

accepted as they often subsume the information in measures computed using high-frequency data.

The intuition for this result comes, of course, from the forward-looking aspect of option implied in-

formation.

Among these studies, only Martens and Zein (2004) is interested in the comparison of volatility fore-

cast models in the case of commodities and in particular in the case of crude oil. Another important

reference is Agnolucci (2009) who compare the point forecast of the volatility of oil futures returns

using implied or GARCH volatilities as possible predictors, as did Kroner et al. (1995) before him. An

advantage of our approach is that we do not rely on a given parametrization in contrast with Kroner et

al. (1995), Martens and Zein (2004) or Agnolucci (2009) who assumes a ’Black and Scholes’ dynamics

for the oil price. As such, the results in these papers are difficult to interpret as model comparison also

jointly test the assumed dynamics for oil futures prices.

More classical studies make use of daily data in a GARCH framework. Kang and Yoon (2013) investi-

gates the long-memory properties of three time-series of front-month energy futures contract (WTI,

heating oil #2, and unleaded gasoline) volatility relying on a number of long-memory models. As

such, they extend the analysis in Kang et al. (2009).2 The authors find that their models based on daily

data provide good in-sample fit for conditional volatility. As for the out-of-sample performance of the

competing models, no model emerges as a leading forecasting model based on Diebold-Mariano pair-

2Kang et al. (2009) use different GARCH models to forecast the oil price volatility and succeed in modeling the long-memory
behavior of volatility which is common to most of the financial series (power series are even more persistent). Wei et al. (2010)
refine the analysis in Kang et al. (2009). Mohammadi and Su (2010) also consider the GARCH behavior of crude oil prices.
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wise comparison. Note that these different studies rely on a very noisy proxy for conditional volatility,

namely the squared daily returns.

We enlarge the scope of the above-cited studies in considering the issue of density forecast when

a volatility index such as the OVX can be considered as a predictor.3 The standard methodology esti-

mates the conditional risk-neutral density from a set of option prices with various strikes (see Christof-

fersen et al. (2012)) from which a density forecast (of the risk-neutral density) can be estimated. Then,

the econometrician has to make a few theoretical assumptions to recover the physical density from

the risk-neutral one, which is a cumbersome step that is highly sensitive to modeling choices.4 In

this paper, we choose to rely exclusively on model-free implied volatilities. This choice has the main

drawback that we disregard information about the full option-implied probability distribution. But

this is precisely our aim: we want to evaluate the information content of the volatility index itself as

we strongly believe that practitioners do not compute risk-neutral probability distributions from the

set of available raw option prices. Therefore, we do use information from the risk-neutral world to

forecast the physical world density without any mapping attempt between the two measures.5 As

such, we do not take into account the volatility risk premium, that is the difference between implied

and realized volatility. It has to be noted that our choice is without consequence as the object of in-

terest in our work is ultimately the relative forecasting performance of the models. In addition, our

methodology does not rely on a given dynamics for the oil price. Our choice to use the OVX index

is also motivated by the limited number of available option strikes which is low to compute robust

density estimates. Indeed, out- and in-the money options are not very liquid and empirical exercices

such as in Melick and Thomas (1997) are difficult to implement in a robust manner.

We use the model from Maheu and McCurdy (2011) along with three measures of volatility. Two of

them are model-free, i.e. they do not require any modeling assumption to derive implied volatility

3The volatility index OVX for the WTI futures is computed similarly as the famous VIX index for the S&P 500 index. The interested
reader is referred to Christoffersen et al. (2012) for a very detailed presentation of the VIX methodology and theoretical and/or
empirical work based on this index. Additional references are provided in the Data section.

4Day and Lewis (1993) is an early attempt to estimate the risk-neutral density of returns for the WTI futures market. More
recently, HÃ ģ and Tsiaras (2011) rely on the approach in Fackler and King (1990), i.e. they avoid any assumption on the form
of the utility function of the representative agent (as in Bliss and Panigirtzoglou (2004) among others). Moreover, “As reviewed
in Ziegler (2007), however, empirical comparisons between risk-neutral and real-world densities of stock indices reveal that
such simple transformations are generally problematic since the empirical pricing kernels imply that investors are risk-seekers
for certain regions of wealth. Moreover, when option claims are not written on the market index but some other underlying,
such as crude-oil futures in our case, extra assumptions are needed regarding the relationship between crude-oil prices and
aggregate consumption levels so that further complications would arise.” (p. 734) Nevertheless, statistical criterion in Fackler
and King (1990) do not alleviate the error-in-variable issue which is a sensible question in the market of options on oil futures.

5Christoffersen et al. (2012) present methodologies dedicated to the extraction of risk-neutral densities (section 4) and its map-
ping into real-world densities (section 5) which is an object of interest for researchers and practitioners.
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estimate. The first measure is the handily-back-calculated volatility index for the WTI futures market

(OVX index) that provides a model-free estimate of the implied volatility for 22-day maturity options

on WTI oil futures. As a second model-free measure, we use the MFIV computed following Andersen

and Bondarenko (2010) that builds on the corridor variance concept (more on that below). The MFIV

is highly correlated with the OVX but offers an alternative to the volatility index by considering all

option prices. Then, we compare the predictions from the model in Maheu and McCurdy (2011) using

the two model-free measures with the forecast from the same model using the realized volatility as an

input and the prediction from an EGARCH model.

Our results provide evidence of the superiority of implied volatility to deliver competitive forecasts

of the density of oil futures returns. The results are statistically significant at high thresholds. The

sole exception is for the EGARCH model which is not significantly dominated by the model based on

implied volatilities at very short horizons (2-3 days).

Our paper is organized as follows. The next Section describes the econometric approach for modelling

simultaneously returns and volatility and how density forecasts are derived from this model. Section

4 provides all our empirical findings and evaluates their robustness. Section 5 provides concluding

remarks.

2 Quantitative approach

2.1 Extracting implied volatility

We use two different measures of implied volatility that are model-free. We abstract from giving all

details for the computation of both implied volatilities and refer the reader to the original contribu-

tions.6

Martens and Zein (2004) also use option prices to compute implied volatilities. Their methodology

follows the approximation derived in Barone-Adesi et Whaley (1987) to calculate the implied volatility

of an American style option, which is the case of WTI options on futures. Next, Martens and Zein

(2004) consider the “weighted average of the two closest-to-the-money calls and two closest-to-the-

6Both methodologies are very long to be presented here in details and such a presentation is not likely to help the reader to
better understand what is done in the paper. Moreover, the methodologies are rather standard in financial economics and can
be found in a very detailed manner in numerous applications.
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money puts where the weights are chosen so that the average strike equals the underlying futures

prices.”(p. 1013) Such a measure shares some similarities with model-free implied volatility that we

use.

The first measure is similar to the official volatility index OVX for WTI futures crude oil that is quoted

on the Chicago Board Options Exchange (CBOE). The full characteristics of the volatility index can

be found at the webpage ”http://www.cboe.com/micro/oilvix/”. The methodology follows Carr and

Wu (2009) whose main idea is to compute the variance risk premium using variance swaps on futures

contracts. Because variance swaps on energy commodities are not liquid enough and are not publicly

quoted, we proceed as in Trolle and Schwartz (2010) who use theoretical developments in a series of

contributions by Britten-Jones and Neuberger (2000), Jiang and Tian (2005) and Carr and Wu (2009) to

derive a synthetic variance swap using a cross-section of publicly traded options in futures contracts.

The methodology allows to recover the OVX when it did not exist thereby permitting to assess the

forecasting value of this measure for predicting the density of futures returns over a longer period.

The second measure follows Andersen and Bondarenko (2010) and is called MFIV. The MFIV is the

model-free implied volatility that is derived using the concept of barrier variance contract. Because

the barrier variance contract differs from the variance swap, the two measures only coincide when the

barrier is infinite which makes the MFIV slightly different from the OVX. For robustness, we perform

the empirical analysis using both measures and show that the MFIV has better performance for very

short horizons while the OVX outperforms the MFIV for horizons beyond one month and a half.

The problem in estimating implied volatility is that the number of available and liquid strikes can be

low thereby limiting the possibility to extract implied volatility in a model-free manner as in Jiang and

Tian (2005) or Andersen and Bondarenko (2007). In addition, the derived implied-volatilities are not

free from measurement errors (see Covrig and Low, 2003). As such, the use of most of available strikes

is useful in measuring the implied volatility. Nevertheless, deep out-of-the-money or in-the-money

options may be less liquid and more prone to the error-in-variable problem.7

As noted in Jorion (1995) and further recalled in Martens and Zein (2004), using options on futures,

what we do, has the clear advantage to limit measurement errors as options and futures are often

7Covrig and Low (2003) thus rely on quoted implied volatility instruments. Those instruments deliver better volatility forecasts
than those from historical models even for shorter horizons. These results may come from the noisy proxy for volatility against
which the volatility prediction performance is evaluated.

5



traded at the same location. Moreover, futures do not pay dividends which is a clear advantage in

option quotation.

2.2 Modeling both returns and volatility

Making multi-step ahead forecast requires modeling both returns and volatility. We follow the method-

ology developed in Maheu and McCurdy (2011) who develop such a bivariate model so as to be able

to derive a forecast of the density of returns several periods ahead by means of simulations. Beyond

model-free implied volatilities, we use the model in Maheu and McCurdy (2011) along with the real-

ized volatility estimate, which makes use of intraday data. This original measure developed in Ander-

sen and Bollerslev (1998) follows the early contributions by French et al. (1987) and Hsieh (1991). The

estimated realized variance is known to converge to the integrated variance as the sampling frequency

tends to infinity (Barndorff-Nielsen and Shephard, 2002).

The two most sensitive assumptions in the Maheu and McCurdy’s setting are (1) the cross-equation

which permits to link returns with the volatility measure and (2) the assumed distribution of volatility.

Following Barndorff-Nielsen and Shephard (2002) and Andersen et al. (2003), we retain their first

cross-equation where it is assumed that the conditional variance of returns equals the conditional

expectation of quadratic variation which is best proxied by the conditional expectation of realized

volatility when the sampling interval tends to zero, or:

σ2
t = Et−1(QVt) = Et−1(RVt)

for a given day t. Voluntarily ignoring the volatility risk premium for reasons given above, we also

assume that the investor can use a model-free option-implied volatility (IV) directly provided by the

OVX or the MFIV to form her expectation of the conditional volatility. In this case, we have:

σ2
t = Et−1(IVt)

With these three volatility measures (VM) in hand, and assuming log-normality, we then have:
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Et−1(VMt) = exp

(

Et−1 log(VMt) +
1

2
Vart−1(log(VMt))

)

(1)

Otherwise stated, a forecast of (implied or realized) volatility including all information up to t − 1

permits to estimate the conditional variance of returns σ2
t thereby allowing to model returns simulta-

neously with volatility.

We thus have first to forecast the point volatility. The HAR specification of Corsi (2009) (following

Muller et al. (1997)) has been widely used to model realized variance or volatility (see Andersen et al.

(2007), Liu and Maheu (2009), Maheu and McCurdy (2011), among many others) because it is able to

model the strong persistence of the conditional variance. We also rely on this model in the present

paper as it can be consistently estimated by OLS and deliver good forecasts of conditional volatility.

We also use the HAR to model the OVX or MFIV dynamics following Fernandes et al. (2011) who show

that the HAR model also deliver a very competitive representation for the VIX index. In particular, the

authors show the ability of the pseudo-long-memory model Ã la Corsi to deal with the persistence in

the VIX series. We empirically show that the HAR is also relevant to model the OVX and the MFIV. In

particular, we show that estimates are significant for the HAR-OVX and the HAR-MFIV but that these

estimates represent different volatility cycles than for the HAR model using realized volatility.

Let us now detail the general form of the bivariate model under consideration.8 For a given volatility

measure VMt, which could be either the realized volatility or one of the implied volatility, the bivariate

model can be written as follows:

rt =µ+ ǫt, ǫt = σtut ut ∼ NID(0, 1)

log(VMt) =ω + φ1log(VMt−1) + φ2log(VMt−5,5) + φ3log(VMt−22,22)

+ γut−1 + ηvt vt ∼ NID(0, 1)

(2)

with rt the daily return, ut and vt unpredictable error terms that are NID(0,1). The estimation of this

system plus the cross-equation restriction is done by maximizing the conditional log-likelihood. As

in Maheu and McCurdy (2011), we allow for an asymmetric response of volatility to past negative

8Further details can be found in Maheu and McCurdy (2011) from which we do not reproduce the integrality of mathematical
developments to save space.
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returns through γ. The forecasts obtained using the bivariate model are compared with those from

the following standard EGARCH model:

rt = µ+ σtǫt

log σ2
t = ω + αǫt−1 + θ|ǫt−1|+ β log σ2

t−1

(3)

where ǫt ∼ N(0, 1). Note that the normality assumption for the error terms has no impact on our

results. Using alternative distributions such as the GED, the Student or even a mixture of normals,

which is known to accommodate various combinations of skewness and kurtosis, our empirical re-

sults only provide a slightly better in-sample fit which does not translate in a better out-of-sample

density forecast. Consequently, we only present the results for the Gaussian case.

2.3 Evaluating density forecasts

The methodology developed in Maheu and McCurdy (2011) provides multiperiod density forecasts

as “they provide more information to discern among models” (p. 72-73). Indeed, different models

may have different performance at different horizons and an analysis of the relative performance of

models at various horizons may be of interest to the econometrician as well as for derivatives pricing

and risk management activities. In the present paper, multiperiod forecasts are essential because they

confirm that models based on implied volatilities dominate at all horizons.

The assess the performance of the four models under consideration, we use the standard DMW test

of equal predictive accuracy developed in Diebold and Mariano (1995) and West (1996) as our models

are non-nested.9 The DMW requires a loss function and, as in Maheu and McCurdy (2011) we rely on

the predictive likelihood developed in Amisano and Giacomini (2007). For a given predictive density

fM,k(. | Φt, θ) of a model M at a horizon k using information Φt up to time t and θ the vector of

estimated parameters, the average predictive likelihood will be computed as:

LM,k =
1

T − τ − kmax + 1

T−k
∑

t=τ+kmax−k

logfM,k(rt+k | Φt, θ) (4)

9When models are nested, Clark and West (2007) suggest to modify the DMW statistic whose asymptotic distribution becomes
highly non-standard. In the case of non-nested models, no adjustment is necessary to the standard statistic.
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with T = 1992 the total number of daily observations in our sample, τ the length of the window for

estimation, kmax the maximum forecast horizon and rt+k the realized return at the horizon k. For

comparability of our results with the existing literature, we select the estimation window τ to be 1200

days and predict up to 60 days. Because LM,k can be computed for all k from 1 to 60 days, we obtain a

term structure of average predictive likelihood which will be helpful to discuss the forecasting perfor-

mance of the different models investigated in the present study across horizons. The DMW statistic

using the predictive likelihood is then given by:

tkM,N = (LM,k − LN ,k)×
( (σ̂M,N ,k)√

T − τ − kmax + 1

)−1

. (5)

Following the literature on economic forecasting, σ̂M,N,k is estimated through the heteroscedasticity-

and autocorrelation-consistent estimate of the long run variance developed in Newey and West (1987).

Amisano and Giacomini (2007) note that their test displays good properties for large enough sample

(n ≥ 150) which makes the test best suited for financial applications in contrast with applications in

macroeconomics. This is the case of our empirical application. The main theoretical drawback of the

Diebold and Mariano methodology is that it does not consider explicitly the parameter estimation

error. Nevertheless, under realistic assumptions, the parameter estimation error vanishes asymptoti-

cally.10

3 Data

We purchased option data from CBR Reuters and tick (transaction) data from TickData for the period

going from October 8, 2001 to October 29, 2009. As such, this paper represents the most extensive

study using model-free implied volatility for the WTI futures market. Dealing with intraday data re-

quires appropriate filtering (cleaning) of the data. As is common in this literature (see Andersen et al.

(2003)), we remove days with (1) transactions outside the official trading period, (2) transactions with

a variation of more than 2% in absolute value compared to the previous transaction and (3) transac-

tions not reported in chronological order. We also remove days with insufficient trading activity. In

particular, we do not further consider days with a shortened trading period and days with more than

10Corradi and Swanson (2006) survey the evaluation of predictive density and provide interesting insights about the relevant
methodology under various assumptions.
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ten zero-return. We end with trading days where liquidity is sufficient to ensure that our estimate

of realized variance is consistently estimated. The total number of days where we have a sufficient

number of intraday returns along with option data is 1992, which will be the length of our sample.

Quotation of the OVX index officially begins July 14, 2008 and it is back-calculated by the CBOE and

publicly available from May 10, 2007. Recent studies such as Aboura and Chevallier (2012) use a time

period beginning in May 2007 for their empirical work. In our paper, we further back-calculate the

OVX index as well as the MFIV following the lines of Andersen and Bondarenko (2010) to increase the

number of observations.11 As a consequence, our estimates will be statistically more robust. This is

an important feature of our study. The sample Pearson coefficient of correlation for the two measures

over the full sample is around 90% indicating a strong convergence of the two measures. However,

we will show in the empirical Section that the statistical performance of each measure is statistically

different for some horizons, thereby motivating our use of both measures.

We compute the realized variance as the sum of the squared 5-minute intraday returns using the last

tick method (Wasserfallen and Zimmermann, 1985). We ignore overnight returns which are known

to follow a very different dynamics and only use intraday returns that cover the trading session. The

5-minute sampling interval is shown to be relevant for the analysis of high-frequency WTI crude oil

futures prices in Chevallier and SÃ c©vi (2012). We also experimented with alternative sampling inter-

vals (1, 2, 10 and 20 minutes) and alternative computation schemes (Zhang et al., 2005) allowing to

deal with the microstructure noise detrimental impact (see Hansen and Lunde (2006) for a discussion

of this issue and Andersen et al. (2011) for an empirical study of the impact of microstructure noise on

volatility forecasts). All these alternative considerations lead to qualitatively and quantitatively similar

results.

In Table 1, we report descriptive statistics for daily returns and the three measures of volatility that we

use in the paper as well as their log counterparts. We first note the average level of implied volatility

which is about 40%. This is line with existing studies on oil volatility. Consistent with the available

empirical literature, we find that returns and volatility have a positive excess kurtosis. The returns’

skewness is slightly below zero, whereas it is strongly positive in the cases of both realized volatility

11We refer the interested reader to the papers of Andersen and Bondarenko (2007) and Andersen et al. (2010) for a short
introduction to the computation of the VIX along with other model-free implied volatility measures. The excellent sur-
vey by Christoffersen et al. (2012) gives in its Table 2 a list of volatility indices computed throughout the world. Most of
them follow the VIX methodology. The official web site of the CBOE also provides some details about the VIX calculation
(http://www.cboe.com/micro/vix/vixwhite.pdf).
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and the implied volatilities. As demonstrated in Andersen et al. (2007), the logarithm transform of the

selected volatility measures is much closer to a Gaussian distribution in light of the values of the third

and fourth moments. On top of that, we observe that the OVX and the annualized square root of the

realized volatility have a very similar standard deviation, despite the difference in their average. The

OVX is on average higher than the realized volatility, expressing the net market demand for hedging.

See Chernov (2007) for a formal approach of this variance risk premium.

All four series are plotted in Figure 1. Daily returns exhibits strong heteroscedasticity in accordance

with the significant excess kurtosis reported in Table 1. Large daily changes mainly occur in the end

of 2001, following the 9/11 event, and in the end of 2008-beginning of 2009 period following the large

drop in crude oil prices from a high $147.27 dollars per baril to a low $33.85 dollars per barrel. The OVX

and MFIV series are transformed into daily volatility measures using the 252 trading days convention.

As for the realized volatility, recall that we exclude the overnight returns but that density forecasts

computed using overnight returns have similar performance in the out-of-sample exercise.12 The

same events than those mentioned for returns can explain the high increase in volatility for the three

measures while a large jump in volatility is also visible in the early 2003 due to a large drop in oil price.

Overall, model-free implied volatilities are less erratic than realized volatility is.

4 Empirical results

4.1 Estimation results

As mentioned above, the parameters of the EGARCH and HAR models are estimated using a rolling

window scheme. West (2006) suggest using rolling window “[. . . ] when one wishes to guard against

moment or parameter drift that is difficult to model explicitly.”(p. 107) The window size is chosen to

be 1260 as in Maheu and McCurdy (2011) making the first predictive density estimated to be available

for November, 22th of 2006.

The number of estimation windows is given by T −τ−kmax+1 = 678. We report in Table 2 the sample

statistics for the estimated parameters of the EGARCH model. Estimates are broadly in line with the

literature, as volatility is perceived as persistent – with β being slightly lower than 1 – and subject to

12Results are available upon request and not reported to save space.
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leverage effects, as α is negative and different from zero (its 95% quantile is equal to -0.037).

Table 3 reports similar sample statistics for the HAR-RV model. Again, given the empirical quantiles

obtained throughout the rolling estimation, every parameter driving the volatility process is statisti-

cally different from zero. We observe that the parameters for the one-day, one-week and one-month

average log realized volatility are positive and highly significant. Also, a leverage effect seems to be

present. As in the EGARCH case, γ is negative, indicating the existence of a leverage effect. When

investigating the contributions of each volatility component in the HAR model, the five days average

component clearly dominates the others. The 22 days average comes second and the most recent data

have the weakest influence. These results are in line with those presented in Andersen et al. (2007) or

Corsi (2009) among others, but qualitatively different as the most recent data often have a consider-

able influence for stock indexes or exchange rates in existing empirical studies.

In the case of the OVX index – as presented in Table 4 – it appears that the leverage effect is weaker

than it is for the case of realized volatility. Also, the shortest component of the HAR model has the

highest contribution in the dynamics of the VIX. The 5 days average has a weaker influence and the

22 days one seems to have a very limited impact on the future of volatility. These results confirm

the empirical findings in Fernandes et al. (2011) and support our decision to consider the HAR as a

time-series model for the OVX dynamics. Finally, from Table 5, we note that empirical estimates for

the HAR model using the MFIV are very similar to the OVX’ estimates except that the weight of the

one-day lagged volatility is even larger in modeling the current level of MFIV. Importantly, there is no

evidence of a leverage effect for implied measures of volatility.

In summary, volatility cycles are very different for the realized volatility and the implied volatility mea-

sures as can be seen for the estimates of the HAR components. Moreover, a different leverage effect is

diagnosed for the EGARCH and the realized volatility dynamics, which even disappears when implied

volatilities are used. All in all, our results point to the fact that the two implied volatility measures

can be adequately modeled in a HAR framework, and have quite similar dynamics, thanks to the HAR

components analysis.
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4.2 Comparing the accuracy of density forecasts

The density forecasts are computed using the rolling estimation scheme that is similar to Maheu and

McCurdy (2011). The forecast of the density of returns is provided for all horizons going from 1 to 60

days. We plot the average predictive likelihood computed from Eq. (4) for each measure of volatility

and for all horizons in Figure 2. As expected, the predictive likelihood decreases on average when the

forecast horizon is longer. As such, our results are conform to the bulk of the literature (see Christof-

fersen and Diebold (2000) among others) as the density forecast accuracy is better for shorter hori-

zons. From this first graphical representation of our results, it appears that density predictions using

option-implied volatilities as an input are better than those using information from historical series

of returns, either daily or intradaily.

The graphical comparison of average predictive likelihoods for all four models is not sufficient to de-

liver statistical evidence of the superiority of one model over another. Hence, for each pair of models

and each horizon we compute the DMW statistic given in Eq. (5) to gauge the relative forecasting

performance of both models. The DMW for two sets of pairs of models are plotted in Figure 3 and 4.

Figure 3 reports the DMW statistic when then EGARCH model estimated using daily data is involved.

We observe that the EGARCH model never delivers statistically superior density forecast except at the

anecdotal 9-day horizon when the EGARCH is compared to the RV model. After 24 days (one trading

month), the EGARCH model is statistically inferior to the RV model. As for the models using implied

volatilities as volatility measures, Figure 3 provides evidence of the their good performance with re-

spect to the EGARCH model, except in the very short-term (1-5 days) where the EGARCH model deliv-

ers density forecasts that are as good as for the implied volatility models in a statistical sense. Overall,

evidence from Figure 3 highlights the low performance of the EGARCH model relatively to the RV or

implied volatility models. Our conclusion for the EGARCH-RV pair confirms the findings in Maheu

and McCurdy (2011) that intraday data may be valuable in forecasting the future density of returns.

However, because models based on implied volatilities also dominate the EGARCH specification, we

are left with the interesting question of the relative performance of the RV model with respect to the

OVX or MFIV model. In particular, is the good performance of non-EGARCH model coming from the

use of high-frequency data or from a measure of volatility that include forward-looking information?
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Figure 4 provides a clear response to this question. Indeed, at all horizons, the models based on

implied volatility measures outperform the model based on intraday data. As Maheu and McCurdy

(2011) do not consider the implied volatility in their analysis, we cannot compare our empirical find-

ing for WTI crude oil futures with an existing result for stock or bond markets. However, the result is

particularly interesting as the forward-looking aspect of the OVX or MFIV translates into a significant

improvement in density forecasting. Moreover, we can think of our results as a lower bound to the po-

tential improvement coming from implied measures as we only consider the volatility index and not

the full information set available in the numerous option quoted prices. Finally, note also from Figure

4 that predictions from the OVX dominate those from the MFIV for horizons longer than 35 days (one

month and a half). Because the MFIV makes use of the full set of available options and that options

that are far from moneyness are more prone to measurement errors, we might think that the better

performance of the OVX is related to its use of more liquid options only.13

For completeness, some numerical results are reported in Table 6 where we further observe the supe-

riority of models based on implied volatility. Importantly, the significance level of our results is high

with DMW statistics often higher than 4 in absolute value. This indicates that our results are not likely

to be driven by small sample effects.

To further put our results in perspective, recall that Blair et al. (2001) investigate the contribution of

high-frequency data for forecasting the volatility of the S&P 100 stock index and show that in the short

term, tick-by-tick data help in forecasting the volatility beyond the information already incorporated

in the volatility index but that overall; “The evidence for incremental forecasting information in intra-

day returns is insignificant.”(p. 5) Our results corroborates this finding in the case of density forecast.

Also for the S&P 100 stock index, Koopman et al. (2005) show that realized volatility has very good

forecast performance in comparison with standard GARCH or models based on implied volatility at

horizons shorter than one week. We provide evidence that in the case of crude oil, models based on

implied volatility outperforms models based on realized volatility for all horizons including the very

short term.

13The MFIV is an aggregated index as is the OVX. The fact that the MFIV does use the full set of available option prices should not
be confounded with the estimation of a risk-neutral density as described in the Introduction Section.
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5 Conclusion

This paper makes use of implied volatility indexes to compute density predictions for the WTI crude

oil futures and compares these predictions to density forecasts based on realized volatility and the

EGARCH model. Models using implied volatility under the form of an index significantly outperform

their counterpart based on historical data. This finding highlights the information content of option

implied volatility that is forward-looking by nature.

As for the implications of our analysis, Christoffersen and Diebold (2000) note that, “if volatility fluc-

tuates in a forecastable way, volatility forecasts are useful for risk management” (p. 12). The same

conclusion applies to the forecastability of the density of returns. This feature might then translate

into an improvement of quantile estimation and improve, for instance, value-at-risk estimates and

more generally risk management. Such an economic analysis of the potential gain associated with

better prediction of the density of returns may be of interest for the energy finance community and is

left for future work.
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Tables

WTI Oil futures Returns RV(5min) OilVIX MFV Log RV(5min) Log OilVIX Log MFV

Mean 0.155 30.184 41.339 40.332 3.338 3.680 3.655
Standard Dev. 0.397 13.207 13.456 13.315 0.354 0.275 0.275
Skewness -0.173 3.347 1.924 2.060 0.777 1.082 1.169
Excess Kurtosis 3.142 28.457 4.082 4.767 1.221 1.065 1.381
5% quantile -0.039 17.172 27.977 27.480 2.843 3.331 3.314
95% quantile 0,039 55.938 72.057 71.297 4.024 4.277 4.267

Observations 1992

Table 1
Summary Statistics
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EGARCH ω α θ β

Average -0.528 -0.067 0.097 0.942
Standard Dev. 0.302 0.026 0.014 0.039
Skewness -0.350 -0.703 1.140 -0.365
Kurtosis -0.724 -0.447 13.056 -0.697
5% quantile -0.918 -0.119 0.073 0.891
95% quantile -0.132 -0.037 0.113 0.993

Table 2
Sample statistics for the estimates of the EGARCH model over all windows for out-of-sample forecast.

HAR-RV-Gaussian ω φ1 φ2 φ3 γ µ η

Average -1.316 0.090 0.446 0.308 -0.037 0.001 0.454
Standard Dev. 0.625 0.012 0.057 0.024 0.003 0.000 0.013
Skewness 0.741 -0.887 0.159 0.506 0.016 -0.312 0.099
Kurtosis -1.150 0.415 -1.219 -1.099 -0.953 -0.403 -1.478
5% quantile -1.969 0.063 0.360 0.279 -0.042 0.000 0.436
95% quantile -0.303 0.104 0.528 0.348 -0.033 0.001 0.474

Table 3
Sample statistics for the parameters of the estimated HAR-RV over all 678 windows for out-of-sample
forecast.
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HAR-RV-Gaussian OilVIX ω φ1 φ2 φ3 γ µ η

Average -0.135 0.854 0.095 0.033 -0.002 0.001 0.084
Standard Dev. 0.083 0.027 0.017 0.017 0.001 0.000 0.002
Skewness 0.341 0.057 -0.202 0.133 0.401 -0.311 0.475
Kurtosis -0.635 -1.305 -0.830 -1.609 -0.817 -0.407 -1.305
5% quantile -0.241 0.816 0.067 0.012 -0.003 0.000 0.082
95% quantile 0.003 0.891 0.123 0.058 0.000 0.001 0.087

Table 4
Sample statistics for the parameters of the estimated HAR-OVX over all windows for out-of-sample
forecast.

HAR-RV-Gaussian MFIV ω φ1 φ2 φ3 γ µ η

Average -0.128 0.873 0.080 0.030 0.002 0.001 0.083
Standard Dev. 0.080 0.019 0.020 0.020 0.001 0.000 0.003
Skewness 0.501 -0.236 -0.102 0.161 0.567 -0.300 0.086
Kurtosis -0.709 -0.756 -0.537 -1.685 0.260 -0.440 -1.342
5% quantile -0.217 0.841 0.044 0.005 0.001 0.000 0.079
95% quantile 0.012 0.903 0.110 0.058 0.004 0.001 0.087

Table 5
Sample statistics for the parameters of the estimated HAR-MFIV over all windows for out-of-sample
forecast.
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Models RV(5min) OilVIX MFIV

horizon = 5 days
EGARCH 1.526 -2.023 -2.737
RV(5min) -2.531 -3.218
OilVIX -2.210

horizon = 10 days
EGARCH 0.824 -3.243 -3.814
RV(5min) -3.172 -3.703
OilVIX -1.420

horizon = 30 days
EGARCH -3.693 -4.665 -4.999
RV(5min) -3.779 -4.099
OilVIX 0.640

horizon = 60 days
EGARCH -4.204 -4.862 -4.932
RV(5min) -4.737 -4.886
OilVIX 3.374

Table 6
Average Diebold-Mariano statistics using the predictive likelihood as in Amisano and Giacomini
(2007). The pairwise statistic goes from 1 day to 60 days. A positive statistic indicates that the first
model is superior to the second model. The asymptotic distribution of the statistic is standard nor-
mal.
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Figures
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Figure 1
The figure plots the daily log-returns (top-left panel), the daily realized volatility (square-root of the
daily realized variance) (top-right panel), the back-calculated OVX (bottom-left panel) and the model-
free implied volatility (bottom-right panel) for the period October 8, 2001 to October 29, 2009 (1992
observations). All volatility measures are in annualized terms.
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Figure 2
Average predictive likelihoods for horizons going from 1 to 60 days.
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Figure 3
Diebold-Mariano test statistics of the difference between average predictive likelihoods between
EGARCH and alternative models
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Figure 4
Diebold-Mariano test statistics of the difference between average predictive likelihoods between pairs
of models

5 10 15 20 25 30 35 40 45 50 55 60
−6

−5

−4

−3

−2

−1

0

1

2

3

4

Forecast Horizon

D
ie

bo
ld

−M
ar

ia
no

−W
es

t s
ta

tis
tic

OilVIX vs. MFIV

RV vs. OilVIX

RV vs. MFIV

2
4



References

ABOURA, S., CHEVALLIER, J., 2013. Leverage vs. feedback: Which effect drives the oil market? Finance Research Letters 10, 131-141.

AGNOLUCCI, P., 2009. Volatility in crude oil futures: a comparison of the predictive ability of GARCH and implied volatility models.

Energy Economics 31, 316-321.

AMISANO, G., GIACOMINI, R., 2007. Comparing density forecasts via weighted likelihood ratio tests. Journal of Business and Eco-

nomic Statistics 25, 177-190.

ANDERSEN, T.G., BOLLERSLEV, T., 1998. Answering the skeptics: yes, standard volatility models do provide accurate forecasts. Inter-

national Economic Review 39, 885-905.

ANDERSEN, T.G., BOLLERSLEV, T., CHRISTOFFERSEN, P.F., DIEBOLD, F.X., 2006. Volatility and correlation forecasting. In: G. Elliott,

C.W.J. Granger and A. Timmermann, Handbook of Economic Forecasting (Chap. 15), vol. 2, Elsevier.

ANDERSEN, T.G., BOLLERSLEV, T., DIEBOLD, F.X., 2007. Roughing it up: including jump components in the measurement, modeling

and forecasting of return volatility. Review of Economics and Statistics 89, 701-720.

ANDERSEN, T.G., BOLLERSLEV, T., DIEBOLD, F.X., LABYS, P., 2003. Modeling and forecasting realized volatility. Econometrica 71,

579-625.

ANDERSEN, T. G., BOLLERSLEV, T., MEDDAHI, N., 2011. Realized volatility forecasting and market microstructure noise. Journal of

Econometrics 160, 220-234.

ANDERSEN, T.G., BONDARENKO, O., 2007. Construction and interpretation of model-free implied volatility. NBER Working Paper no.

13449, Cambridge, MA.

ANDERSEN, T.G., BONDARENKO, O., 2010. Dissecting the pricing of equity index volatility. Unpublished manuscript, Northwestern

University and University of Illinois at Chicago.

BARNDORFF-NIELSEN, O., SHEPHARD, N., 2002. Econometric analysis of realized volatility and its use in estimating stochastic volatil-

ity models. Journal of the Royal Statistical Society, Series B 64, 253-280.

BARONE-ADESI, G., WHALEY, R.E., 1987 . Efficient analytical approximation of American option values. Journal of Finance 42, 301-

320.

BECKER, R., CLEMENTS, A., WHITE, S., 2007. Does implied volatility provide any information beyond that captured in model-based

volatility forecasts? Journal of Banking and Finance 31, 2535-2549.

BLAIR, B.J., POON, S., TAYLOR, S.J., 2001. Forecasting S&P 100 volatility: the incremental information content of implied volatilities

and high-frequency index returns. Journal of Econometrics 105, 5-26.

BLISS, R., PANIGIRTZOGLOU, N., 2004. Option-implied risk aversion estimates. Journal of Finance 59, 407-446.

BRITTEN-JONES, M., NEUBERGER, A., 2000. Option prices, implied price processes, and stochastic volatility. Journal of Finance 55,

839-866.

CABEDO, J.D., MOYA, I., 2003. Estimating oil price ‘value at risk’ using the historical simulation approach. Energy Economics 25,

239-253.

CANINA, L., FIGLEWSKI, S., 1993. The informational content of implied volatility. Review of Financial Studies 6, 659-681.

CARR, P., WU, L., 2009. Variance risk premiums. Review of Financial Studies 22, 1311-1341.

CHEVALLIER, J., SÉVI, B., 2012. On the volatility-volume relationship in energy futures markets using intraday data. Energy Eco-

nomics 34, 1896-1909.

CHRISTENSEN, B.J., PRABHALA, N.R., 1998. The relation between implied and realized volatility. Journal of Financial Economics 50,

125-150.

CHRISTOFFERSEN, P.F., DIEBOLD, F.X., 2000. How relevant is volatility forecasting for financial risk management? Review of Eco-

nomics and Statistics 82, 12-22.

25



CHRISTOFFERSEN, P.F., JACOBS, K., CHANG, B.Y., 2012. Forecasting with option implied information In: G. Elliot and A. Timmermann

(Eds.), Handbook of Economic Forecasting, Elsevier, forthcoming.

CLARK, T., WEST, K.D., 2007. Approximately normal tests for equal predictive accuracy in nested models. Journal of Econometrics

138, 291-311.

CORRADI, V., SWANSON, N.R., 2006. Predictive density evaluation. In: G. Elliot, C.W.J. Granger and A. Timmermann (Eds.), Handbook

of Economic Forecasting (Chap. 5), vol. 1, Elsevier.

COVRIG, V., LOW, B.S., 2003. The quality of volatility traded on the over-the-counter currency market: a multiple horizons study.

Journal of Futures Markets 23, 261-285.

CORSI, F., 2009. A simple approximate long memory model of realized volatility. Journal of Financial Econometrics 7, 174-196.

DAY, T.E., LEWIS, C.M., 1992. Stock market volatility and the information content of stock index options. Journal of Econometrics

52, 267-287.

DAY, T.E., LEWIS, C.M., 1993. Forecasting futures market volatility. Journal of Derivatives 1, 33-50.

DIEBOLD, F.X., MARIANO, R.S., 1995. Comparing Predictive Accuracy. Journal of Business & Economic Statistics 13, 253-263.

FACKLER, P.L., KING, R.P., 1990. Calibration of option-based probability assessments in agricultural commodity markets. American

Journal of Agricultural Economics 72, 73-83.

FERNANDES, M., MEDEIROS, M.C., SCHARTH, M., 2011. Modeling and predicting the CBOE market volatility index. Unpublished

manuscript.

FLEMING, J., 1998. The quality of market volatility forecasts implied by S&P 100 index option prices. Journal of Empirical Finance 5,

317-345.

FRENCH, K.R., SCHWERT, G.W., STAMBAUGH, R.F., 1987. Expected stock return and volatility. Journal of Financial Economics 19,

3-29.

GIOT, P., LAURENT, S., 2003. Market risk in commodity markets: a VaR approach. Energy Economics 25, 435-457.

GIOT, P., LAURENT, S., 2004. Modelling daily Value-at-Risk using realized volatility and ARCH type models. Journal of Empirical

Finance 11, 379-398.

GIOT, P., LAURENT, S., 2007. The information content of implied volatility in light of the jump/continuous decomposition of realized

volatility. Journal of Futures Markets 27, 337-359.

HAN, H., PARK, M.D., 2013. Comparison of realized measure and implied volatility in forecasting volatility. Journal of Forecasting,

forthcoming.

HANSEN, P.R., LUNDE, A., 2006. Realized variance and market microstructure noise. Journal of Business and Economic Statistics 24,

127-218.

HARVEY, C.R., WHALEY, R.E., 1992. Market volatility prediction and the efficiency of the S&P 100 index option market. Journal of

Financial Economics 31, 43-73.

HØG, E., TSIARAS, L., 2011. Density forecasts of crude oil prices using option-implied and ARCH-type models. Journal of Futures

Markets 31, 727-754.

HONG, H., YOGO, M., 2012. What does futures market interest tell us about the macroeconomy and asset prices? Journal of Financial

Economics 105, 473-490.

HSIEH, D.A., 1991. Chaos and nonlinear dynamics: Application to financial markets. Journal of Finance 46, 1839-1877.

HUANG, D., YU, B., FABOZZI, F.J., FUKUSHIMA, M., 2009. CAViaR-based forecast for oil price risk. Energy Economics 31, 511-518.

JIANG, G.J., TIAN, Y.S., 2005. The model-free implied volatility and its information content. Review of Financial Studies 18, 1305-

1342.

JORION, P., 1995. Predicting volatility in the foreign exchange market. Journal of Finance 50, 507-528.

26



KANG, S.H., KANG, S.-M., YOON, S.-M., 2009. Forecasting volatility of crude oil markets. Energy Economics 31, 119-125.

KANG, S.-H., YOON, S.-M., 2013. Modelling and forecasting the volatility of petroleum futures prices. Energy Economics 36, 354-362.

KOOPMAN, S. J., JUNGBACKER, B., HOL, E., 2005. Forecasting daily variability of the S&P 100 stock index using historical, realised

and implied volatility measurements. Journal of Empirical Finance 12, 445-475.

KRONER, K.F., KNEAFSEY, K.P., CLAESSENS, S., 1995. Forecasting volatility in commodity markets. Journal of Forecasting 14, 77-95.

LIU, C, MAHEU, J.M., 2009. Forecasting realized volatility: A Bayesian model-averaging approach. Journal of Applied Econometrics

24, 709-733.

MAHEU, J.M., MCCURDY, T.H., 2011. Do high-frequency measures of volatility improve forecasts of return distributions? Journal of

Econometrics 160, 69-76.

MARTENS, M., ZEIN, J., 2004. Predicting financial volatility: high-frequency time-series forecasts vis-Ã -vis implied volatility. Journal
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