

A FEAR INDEX TO PREDICT OIL FUTURES RETURNS

Julien CHEVALLIER et Benoît SEVI

Cahier N° 13.09.103

9 septembre 2013

Centre de Recherche en Economie et Droit de l'Energie CREDEN – Equipe ART Dev – Université Montpellier 1

A fear index to predict oil futures returns

Julien Chevallier*

Université Paris 8 (LED)

Benoît Sévi†

Aix-Marseille Université (Aix-Marseille School of Economics), CNRS & EHESS

May 29,2013

Abstract

This paper evaluates the predictability of WTI light sweet crude oil futures by using the variance risk premium, i.e. the difference between model-free measures of implied and realized volatilities. Additional regressors known for their ability to explain crude oil futures prices are also considered, capturing macroeconomic, financial and oil-specific influences. The results indicate that the explanatory power of the (negative) variance risk premium on oil excess returns is particularly strong (up to 25% for the adjusted R-squared across our regressions). It complements other financial (e.g. default spread) and oil-specific (e.g. US oil stocks) factors highlighted in previous literature.

JEL Codes: C32, G17, Q47

Keywords: Oil Futures, Variance Risk Premium, Forecasting

^{*}Corresponding author. Université Paris 8, LED. 2 rue de la Liberté, 93526 Saint-Denis Cedex, France. Email: julien.chevallier04@univ-paris8.fr

[†]GREQAM, Aix-Marseille Université, Château La Farge - Route des Milles, 13290 Les Milles Aix-en-Provence, FRANCE, Email: benoit.sevi@gmail.com

1 Introduction

This paper investigates *variance* risk-premia in WTI crude oil futures, by using a model-free approach. Indeed, the financial economics literature has proposed recently a new measure of volatility, defined as the difference between model-free implied volatility (from option prices) and model-free realized volatility (from high-frequency intraday data), coined as 'Variance Risk-Premia' (VRP, see among others Jiang and Tian (2005), Carr and Wu (2009), Bollerslev et al. (2009)). A growing literature that analyzes variance risk premia has emerged (see Chen et al. (2011) for an updated discussion).

The variance risk premium in oil markets has been analyzed so far in Doran and Ronn (2008) and Trolle and Schwartz (2010). Doran and Ronn (2008) use a purely parametric approach which is at odds with our empirical analysis. In contrast, our estimate of VRP is completely model-free. On the one hand, the implied volatility is proxied by the CBOE Crude Oil Volatility Index (OVX). The OVX measures the market's expectation of 30-day volatility of crude oil prices by applying the VIX methodology to the United States Oil Fund, LP (Ticker - USO) options spanning a wide range of strike prices. This CBOE index for oil futures based on the VIX methodology has been studied recently by Aboura and Chevallier (2013). On the other hand, the realized volatility is estimated nonparametrically based on the properties of quadratic variations (see the seminal contribution by Andersen et al. (2003)). Our measure of realized volatility is the standard 5-minute estimator which is a robust candidate for the estimation of conditional volatility with many potential applications, such as volatility forecasting.

Trolle and Schwartz (2010) have investigated variance risk-premia in energy commodities, i.e. crude oil and natural gas. They find that the average risk-premia are significantly negative for both markets. Energy variance risk-premia are found to be timevarying, but systematic factors (returns on equity and commodity market portfolios) or commodity-specific factors (inventories) explain little of their level and variation.

The main interests behind modelling variance risk-premia in WTI crude oil futures are twofold: (i) assess the informational contents of the difference between implied (risk-neutral) and realized (historical) volatility series for oil futures, and (ii) gauge whether oil returns are predictable using this difference. Predicting oil prices has many practical implications for both financial and non-financial institutions, as well as for interna-

tional institutions such as IMF and the World Bank whose economic forecasts include oil price forecasts as an input (see Baumeister and Kilian (2012)). These findings will also be of interest for investors, who are interested in dealing with the uncertainty in return variance to effectively manage risk, allocate assets, price accurately derivatives, and in understanding the behavior of oil assets in general.

We compare the oil price forecastability of the VRP with alternative predictors that have been used in the existing literature (see Kaufmann (2011) and Coleman (2012) among others). Due to data limitations, our analysis investigates the in-sample properties of the predictive regression of the monthly excess returns for the WTI futures. In particular, the back-calculation of the OVX cannot be extended in a too far past, as the liquidity of options was quite low at this period. We deal with monthly data for oil returns because returns at a higher frequency are too noisy. This is common practice (see Baumeister and Kilian (2012) among others).

Commodity futures returns are notoriously difficult to explain. Fackler and King (1990) is an early study of the forecast of returns and volatility using option-implied information. Their results are confirmed in Silva and Kahl (1993). Melick and Thomas (1997) use option-implied densities from American options on WTI crude oil to predict future oil prices, and find some predictability. Hog and Tsiaras (2011) use option-implied densities to predict the density of returns for the crude oil market. Another, but related, strand of the literature aims at forecasting the volatility of oil futures (Kroner et al. (1995)). Martens and Zein (2004) make use of intraday data in oil futures markets to compute realized volatility in order to predict future volatility. This paper constitutes one example of the use of intraday, which is not common practice to date in oil markets.

Kroner et al. (1995) also use option-implied information along with historical-based volatility estimates. The authors show the superiority of forecast combinations. A possible explanation behind this result may be found in Ielpo and Sévi (2012) who show that realized volatility dominates implied-volatility for short-horizon forecasts, while the contrary is true for longer horizons.

Alquist et al. (2012) provide an exhaustive review of studies dedicated to the forecast of oil prices. Many contributions use information from the oil market only, as in Alquist and Kilian (2010) or Knetsch (2007), among others. Alquist and Kilian (2010) analyze

the forecastability of oil futures prices using quoted prices of futures contracts of various maturities. They conclude that the random walk is not beaten by any forecast using only futures prices as predictors. This leads to the conclusion that additional predictors may be useful for predicting future oil prices. Knetsch (2007) computes the convenience yield in the oil market to predict oil prices. From his analysis, it appears that the convenience yield has some predictive power for future oil prices. Moreover, there is a tight link between oil markets and the macroeconomy. While many papers have investigated how macroeconomic variables are able to predict oil prices (see Alquist et al. (2012) for a review of the existing literature), recent studies have shown how oil variables such as oil prices (see Driesprong et al. (2008)), position in oil futures markets (see Hong and Yogo (2012)) or convenience yield in commodity markets (see Gospodinov and Ng (2013)) are also able to predict financial variables such as stock, bond or foreign exchange returns.

Conrad et al. (2012) show that some macroeconomic determinants play a role in modeling the correlation between oil and stock prices. We do not investigate the determinants of this relation in the present paper. However, these factors can also help to predict oil price as the latent correlation between oil and the macroeconomy naturally shares some commonalities with the oil market. So far, the best results are provided using statistical factor analysis which gathers a large number of macroeconomic and financial variables as in Le Pen and Sévi (2011, 2013). Zagaglia (2010) also uses this methodology to explain and forecast oil prices with some relative success.

To give a sketch of our results, the VRP appears as a serious candidate to predict oil futures across our regressions (up to 25% of the adjusted R-squared). This quantity contains incremental information about the future of oil prices, and therefore stands out as an intuitive measure of investors' threats (i.e. unpriced volatility) in oil markets. As such, the VRP may be viewed as a 'fear index'. We check that the explanatory power of the VRP in our in-sample predictive regressions cannot be confounded with the information that is present in other predictors by mean of multivariate regressions. An econometric model incorporating the VRP as a predictor of the oil price might be able to beat the random walk, which remains a strong benchmark in oil markets (see Alquist and Kilian (2010) and Baumeister and Kilian (2012) for a discussion). Finally, note that

we do not perform an out-of-sample forecasting exercise due the relative short data sample (10 years) that we have in hand, rather due to the illiquidity of options data before 2001.

The rest of the paper is as follows. Section 2 details the methodology to compute the variance risk premium, and why this concept can be viewed as a fear index. Section 3 presents the exogenous regressors, and then provide the empirical results from the regression analysis. Section 4 concludes.

2 A fear index for crude oil prices

In this Section, we first present the different kinds of data used for the oil futures market. Then, we detail how to compute the realized volatility, and finally the variance risk premium.

2.1 Oil transaction data

The data includes daily closing prices for a roll-over of nearby futures contracts written on the WTI Light Sweet Crude Oil from the New York Mercantile Exchange (NYMEX), which is now part of the CME Group. The nearby futures contract is selected, since it attracts the greatest amount of trading activity. Futures returns series are calculated as the first difference of the log of closing prices. The sample used for oil is from 11:2001 to 12:2010, which is equal to 2,248 trading days (or 109 months).

Figure 1 displays the Monthly prices of NYMEX WTI futures in the top panel, along with monthly returns in the bottom panel. In both panels, we remark the high oil price variability during the summer 2008, which was characterized by a boom and a bust in the prices of many commodities, against the background of speculative activity (see Chevallier (2013) for a discussion).

As a proxy for the Implied Volatility (IV) of the WTI price, we use the CBOE Crude Oil Volatility Index ('Oil VIX', Ticker - OVX). The OVX measures the market's expectation of 30-day volatility of crude oil prices by applying the VIX methodology to the United States Oil Fund, LP (Ticker - USO) options spanning a wide range of strike prices. The main advantage of the OVX index is that it provides us with a model-free estimation of the implied volatility (in the spirit of the VIX), which constitutes a much better ap-

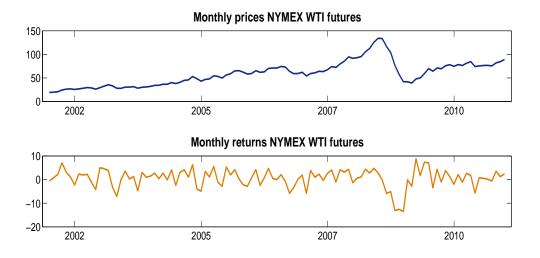


Figure 1: Monthly prices and returns over the period 2001:11-2010:12 for the front-month WTI futures contract traded in CME-NYMEX.

proximation of the implied volatility than the one based on inversion of the standard Black-Scholes formula with close at-the-money options. The properties of the OVX index for the WTI crude oil futures contract have been previously studied by Aboura and Chevallier (2013). Note that we have hand-back-calculated the OVX for the period before May 10, 2007, as it officially exists since July 14, 2008 (the 2007-2008 period is back-calculated by the CBOE itself).

Figure 2 shows the implied volatility following the OVX methodology in the CBOE for WTI options. It is represented in annualized percentage terms, for comparability purposes with other measures of volatility used in this paper. We also notice from this graph the bump in volatility, which may be attributable to the drop in commodity prices in 2008 and the development of the financial crisis in 2009.

2.2 Estimates of volatility using high-frequency data

Next, our investigation of the variance risk premium relies on estimates of the conditional volatility that are computed using high-frequency data. A vast literature has developed on this topic following the seminal contribution by Andersen and Bollerslev (1998) (an excellent survey is in Andersen et al. (2006)). The idea is to use in-fill asymp-

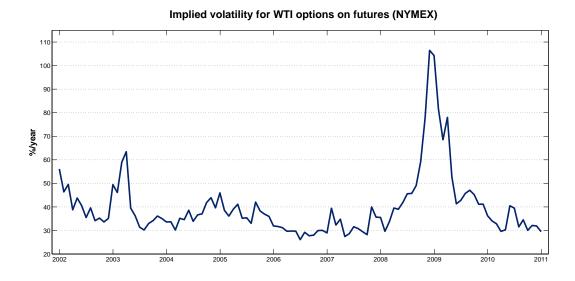


Figure 2: Implied volatility following the OVX methodology in the CBOE.

totics argument to develop an estimate of the conditional volatility that uses intraday returns.

High-frequency data for the NYMEX Light Sweet Crude Oil Futures contract comes from TickData. The average number of daily trades is equal to 25,000. As detailed in Zivot and Wang (2005), we apply a first filter to remove:

- 1. transactions outside the official trading period,
- 2. transactions with a variation of more than 5% in absolute value compared to the previous transaction,
- 3. transactions not reported in chronological order.

Then, we apply a second filter to eliminate days with insufficient trading activity. Namely, we remove days with less than fifty four 5-minute returns, days with more than eight zero-return, and days with less than 1,000 transactions.

A number of estimators have been suggested so far. In this paper, the 'naive' estimator of realized volatility is used. It is defined as:

$$RV_{t,M} = \sum_{i=1}^{M} r_{t,j}^2 \tag{1}$$

where $r_{t,j}$ are intraday returns for day t and M is the number of returns for the day, which depends on the sampling frequency 1/M.

As robutsness checks, we have experimented various other estimators, such as the 'two-scale' estimator of realized volatility by Zhang et al. (2005). These additional tests, available upon request, did not change qualitatively the results.

Estimating realized volatility faces the so-called problem of microstructure noise (MN). This phenomenon emerges from market microstructure problems, whose main examples are the existence of a bid-ask spread, non-synchronous trading, etc. When sampling data at a very high frequency, the MN could therefore strongly bias the estimates. Chevallier and Sévi (2012) provide evidence about the liquidity of the WTI futures market, and show that the 5-minute sampling intervals is a good choice for computing realized variance estimators. That is why we use the standard 5-minute sampling interval in this paper. In addition, Liu et al. (2012) show that the 5-minute sampling frequency is very accurate for forecasting purposes, which makes it a robust tool for an econometric analysis.

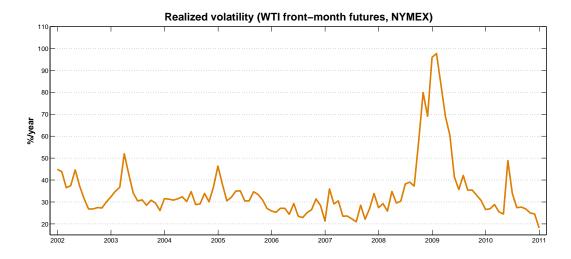


Figure 3: Realized volatility calculated as the squared root of the realized variance.

A plot of the realized volatility is provided in the Figure 3, also in annualized percentage terms. We observe that RVOIL is characterized by a very high volatility during the winter 2008-2009.

2.3 Variance risk premium computation

Following Bollerslev et al. (2009), variance risk-premia (noted VRP_t) can be defined as the difference between the ex ante risk-neutral expectation of the future return variation and the ex post realized return variation:

$$VRP_t = IV_t - RV_t \tag{2}$$

Thus, it is computed as the difference between the model-free implied volatility (IV_t) and the model-free realized volatility (RV_t) for a given WTI futures contract. Note that Carr and Wu (2009) define variance risk premia in a slightly different fashion as the difference between the realized variance and the variance swap rate using the Black-Scholes formula. Given the benefits of the model-free implied volatility explained above, we choose to stick to the approach developed by Bollerslev et al. (2009).

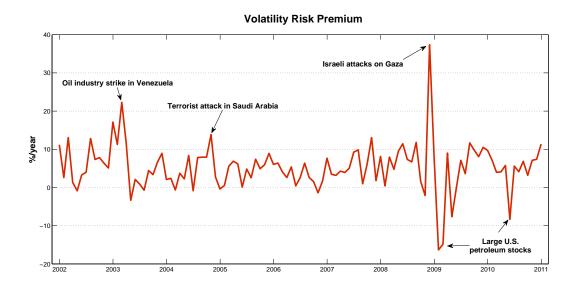


Figure 4: Variance risk premium – difference between implied and realized volatility – along with important events for the oil market during the period.

The variance risk premium is plotted in the Figure 4 in annualized percentage terms. Interestingly, it appears that spikes in the variance risk premium can be associated with major events in oil markets such as the oil industry strike in Venezuela (2003), terrorist attacks in Saudi Arabia (2004) or Israeli attacks on Gaza (2008), while large negative values of the VRP are representative of large U.S. petroleum stocks. This confirms that the variance risk premium materializes oil investor threats, and can be viewed as a 'fear' index.

In the next section, we carry out the empirical analysis to examine the forecasting power of the variance risk premium for oil futures returns.

3 Empirical analysis

This section investigates the real additional explanatory power – if any – of the variance risk premium beyond standard exogenous variables used in recent contributions to explain oil futures returns. Following Diebold (2012), we use the predictive regression framework to avoid disregarding data in a pseudo out-of-sample exercise. Using the full sample leads to achieve maximum asymptotic power, and Wald tests in this context are superior to model comparison in an out-of-sample experiment that leads to a certain loss of power.

Let us present first the exogenous variables, and second run our OLS regressions.

3.1 Additional exogenous regressors

We consider a number a variables that have been able (or should be able) to predict crude oil futures returns:

- ΔStocks is the Monthly U.S. oil stocks from the US Energy Information Administration (EIA). It represents a well-known proxy of the physical fundamentals of the crude oil market (Chevallier (2013)). A linear interpolation has been performed to obtain the data in monthly frequency.
- *Han Index* is a trading activity proxy by Han (2008) using data from the US Commodity Futures Trading Commission (CFTC) Commitment of Traders (CoT) re-

port.¹ This investor sentiment index is calculated as the number of long non-commercial contracts minus the number of short non-commercial contracts, scaled by the total open interest in WTI futures or:

```
Han\ Index = \frac{number\ of\ long\ speculative\ positions-number\ of\ short\ \ speculative\ positions}{total\ open\ interest}
```

As such, this is a directional index of speculative activity in the futures market.

De RoonS is an index to measure hedging pressure in futures markets by de Roon
et al. (2000). From CFTC CoT data, the hedging pressure proxy is calculated as the
difference between the number of short hedge positions and the number of long
hedge positions, divided by the total number of hedge positions, or:

$$\label{eq:positions} De \, RoonS = \frac{number \, of \, short \, hedge \, positions - number \, of \, long \, hedge \, positions}{total \, number \, of \, hedge \, positions}$$

The idea behind this measure is to focus on the positions of traders who are hedgers, i.e. who have a cash business for the commodity. This estimate of hedging pressure is quite different to the Han Index for which the denominator is the total open interest and not the total number of speculative positions. As a consequence, we believe that these measures may be complementary in our regression analysis while matching existing literature dealing with futures market trading activity.

This first group of exogenous variables is pictured in Figure 5. Monthly US oil stocks have been taken in log-first difference to ensure stationarity.

Along with these data, we also use the Real Activity Index developed in Kilian (2009), which is based on dry cargo single voyage ocean freight rates. This index is explicitly designed to capture shifts in the demand for industrial commodities in global business markets following a long tradition of economists who observed the correlation between economic activity and rates for ocean freight.

Kilian's (2009) Real Activity Index (*Kilian Index*) is shown in Figure 6.

¹Following requirements of the CFTC, large traders holding positions above a specified level have to report their positions on a daily basis. Then, the CFTC aggregates the reported data, and releases the breakdown of each Tuesday's open interest in its CoT. The CoT report includes total long and short positions for both 'commercial' traders and 'noncommercial' traders as well as more detailed variables that we do not use here. In other words, 'commercial' traders have to prove an interest for the physical market and are thus considered as hedgers, while 'noncommercial' traders have no relation with the cash business and are simply large speculators.

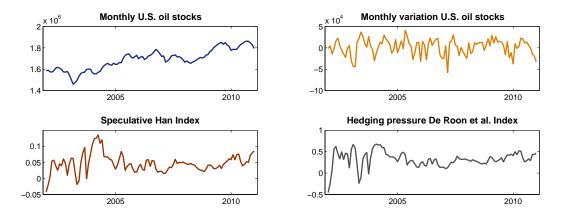


Figure 5: Monthly U.S. oil stocks and oil stocks in first difference (top panels), speculative (Han) index (bottom left panel) and hedging pressure (de Roon et al. (2000)) index (bottom right panel) for the period 2001:11-2010:12.

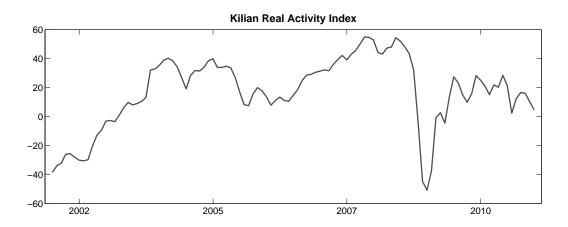


Figure 6: Monthly real activity index from Kilian (2009) over the period 2011:12-2010:12. The activity index is available from the Kilian's webpage at the University of Michigan.

Since the WTI light sweet crude oil futures is based for delivery in Cushing, Oklahoma, we consider another index representative of global business conditions in the USA: the Aruoba - Diebold - Scotti (ADS) Business Conditions Index (Aruoba et al. (2009)). This index is designed to track real business conditions at high frequency. Its underlying (seasonally adjusted) economic indicators (weekly initial jobless claims; monthly payroll employment, industrial production, personal income less transfer pay-

ments, manufacturing and trade sales; and quarterly real GDP) blend high and low frequency information and stock and flow data. It is publicly available from the Phildelphia Fed.

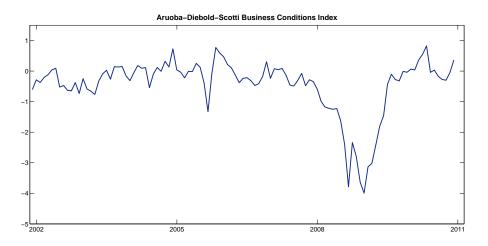


Figure 7: Monthly Aruoba-Diebold-Scotti Business Conditions Index (2009) over the period 2001:12-2010:12. The activity index is available from the Phildelphia Fed.

The ADS index is given in the Figure 7.

Finally, in the spirit of the Fama-French literature, Bali and Peng (2066) and Bali and Engle (2010) have used the following variables to model the hedging component in the ICAPM relationship, which should have predictive power for future returns as they convey some information about the general economic situation:

- ΔFED is the federal funds rate,
- ΔDEF is the default spread calculated as the difference between the yields on BAA- and AAA-rated corporate bonds,
- Δ *TERM* is the term spread calculated as the difference between the yields on the 10-Year Treasury bond and the three-month Treasury bill.

This last group of exogenous regressors is visible from the Figure 8, both in raw and stationary log first-differenced forms.

Table 1 contains the descriptive statistics for all variables used in the paper, along with a cross-correlation matrix. The descriptive statistics confirm that the time series

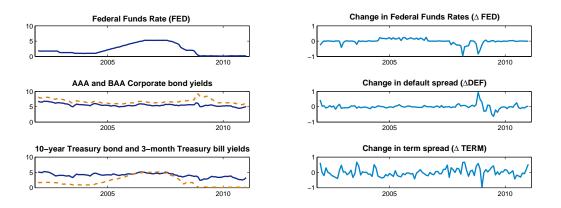


Figure 8: FED, DEF and TERM variables in level (left panels) and first difference (right panels) for the period 2001:11-2010:12.

under consideration are not normally distributed, with negative skewness and excess kurtosis. The cross-correlation matrix allows us to verify that the variables are not too highly correlated, which would cause potential multicolinearity problems in the subsequent regression analysis.

Before proceeding to our econometric analysis, we can summarize the various data frequencies that we have at hand in this paper, and how we have dealt with this issue. Basically, we need to run our OLS regressions on monthly data, because most of the exogenous regressors are available on a monthly basis (at best). Therefore, the volatility time series have all been converted to a monthly frequency. First, the OVX index for implied volatility is available on a daily basis. The monthly implied volatility is taken as the value of the implied volatility on the last day of a given month. Second, intraday data allows to recover daily realized volatility estimates (sampled every 5 minutes). The monthly realized volatility is constructed as the sum of the daily realized volatilities over a given month. Third, the VRP is computed on a monthly basis simply as the difference between IV and RV series in monthly frequency. These data treatments are in line with previous literature. The interested reader can refer to Bollerslev et al. (2009).

14

Table 1: Descriptive statistics and cross-correlation matrix

	Excess return	OVX	RV	VRP	Δ (stocks)	Kilian Index	Han Index	De RoonS	Δ FED	Δ DEF	Δ TERM
Descriptive Statistics											
Mean	0.4425	39.8692	34.5634	5.3059	1893.0459	17.2082	0.0464	0.3214	-0.0175	0.0022	0.0038
Std. Dev. Skewness	3.9367 -1.1200	13.7096 2.8172	13.8728 2.7646	6.2219 0.6715	18774.7266 -0.6812	24.1449 -0.8296	0.0284 0.4250	0.1835 -1.0138	0.1873 -2.3447	0.1633 1.3108	0.2702 0.2891
Exc. kurt. Minimum	2.3587 -13.5577	9.6065 26.1078	8.5907 18.1231	7.7285 -16.3431	0.2801 -57807.0000	0.2629 -50.6335	1.9961 -0.0421	3.3592 -0.4567	8.6215 -0.9600	12.5002 -0.6300	1.0836 -0.9500
Maximum	8.7750	106.4854	97.7289	37.3450	40942.0000	54.9558	0.1352	0.6765	0.2500	0.9400	0.6700
AR(1)	0.3045	0.8656	0.8625	0.1466	0.3389	0.9345	0.7329	0.6710	0.6750	0.4916	0.2426
Correlation matrix											
Excess return	1.0000	-0.3814	-0.4226	0.1018	-0.2152	0.1862	0.3368	0.3343	0.2689	-0.4862	0.0872
OVX RV		1.0000	0.8983 1.0000	0.2005 -0.2503	0.1079 0.2233	-0.4777 -0.4395	-0.2314 -0.2389	-0.0757 -0.1154	-0.3351 -0.2621	0.3169 0.2386	-0.0359 -0.0228
VRP Δ (stocks)				1.0000	-0.2602 1.0000	-0.0726 -0.0268	0.0229 -0.0871	0.0905 -0.1496	-0.1540 0.0742	0.1662 0.0523	-0.0282 -0.1111
Kilian Index					1.0000	1.0000	0.2809	0.1155	0.0473	-0.1379	0.1071
Han Index De RoonS							1.0000	0.8907 1.0000	0.1439 0.1147	-0.2078 -0.2435	0.0002 -0.0594
Δ FED								1.0000	1.0000	-0.4380	-0.4678
Δ DEF Δ TERM										1.0000	0.0537 1.0000

3.2 Univariate OLS regressions

In what follows, we assess the in-sample properties of the predictive regression of the monthly excess returns for the WTI futures. More precisely, the excess return variable is calculated as the log-difference between the end-of-month oil prices.² Besides, note that any endogeneity concern is alleviated by the fact that we use lagged variables on the right-hand side of the equation, in line with Bollerslev et al. (2009).

In Table 2, we present results from univariate linear regressions that are estimated by Ordinary Least Squares(OLS). The first important result is that while both the OVX (model-free implied volatility) and the realized volatility have no predictive power for oil futures returns, the variance risk premium – defined as the difference between these two quantities – has a strong predictive power for oil excess returns (at the 1% level). More precisely, the estimated parameter is negative, indicating that higher VRP is correlated with future negative returns (decrease in price). The adjusted R-squared is roughly equal to 5% for this regression.

Second, we uncover the statistically significant impact of the variable ΔDEF (for the default spread) on oil excess returns at the 5% level. This equation achieves a fairly good explanatory power, with the adjusted R-squared equal to 12%. Among other significant results, we observe the low predictive power of excess return lagged one period for oil excess returns (at 10%). There is also a relationship between higher stocks (variable $\Delta(stocks)$) and negative returns, and this relation is significant at the 10% threshold. This is very intuitive as higher stocks generally indicate future decrease in prices. Other exogenous variables were not successful in explaining oil excess returns at any statistically significant level.

In the next step, we run multivariate regressions on the monthly excess return for the WTI front-month futures contract traded on the NYMEX. We plug in the significant variables from the previous set of regressions.

²For instance, excess return month MM = $\log(\text{price end of month MM})$ - $\log(\text{price end of month MM}(-1))$.

Table 2: Univariate regressions

Constant	0.3242	0.4910	2.3008	1.2788***	0.5191	0.2931	0.4160	0.4560	0.5157	0.4703	0.4521	0.1000
Excess return(-1)	(0.7442) 0.3047* (1.7552)	(0.5331)	(1.3605)	(2.4993)	(1.0744)	(0.4187)	(0.3886)	(0.5120)	(1.2045)	(1.1797)	(0.8913)	(0.2805)
OVX	(111002)	-0.0190 (-0.0699)										
RV		(0.0000)	-0.0532 (-0.9164)									
VRP			(-0.3104)	-0.1572*** (-2.6408)								
Δ (stocks)				(-2.0400)	-2.9615e-05* (-1.7501)							
Kilian Index					(-1.7301)	0.0092 (0.5168)						
Han Index						(0.3100)	0.8124 (0.0583)					
DeRoon Index							(0.0303)	-0.0081 (-0.0054)				
Δ FED								(-0.0034)	3.5419 (0.6861)			
Δ DEF									(0.0001)	-8.6881**		
Δ TERM										(-2.0792)	-1.1461	
ADS											(-0.5679)	0.3321 (0.7700)
Adj. R^2	0.0841	-0.0093	0.0256	0.0523	0.0100	-0.0061	-0.0093	-0.0094	0.0192	0.1216	-0.0034	0.0200

Note: The endogenous variable is the monthly excess return for the WTI front-month futures contract traded on the NYMEX. The period is 2001:12-2010:12. The exogenous variables are defined in the Descriptive Statistics. The number of observations for each regression is 109. *t*-statistics are provided in parentheses below coefficiente estimates. ***, **, * denote statistical significance at respectively the 1%, 5%, and 10% levels.

3.3 Multivariate OLS regressions

Results from multivariate regressions are meant to compare the explanatory power of the VRP when additional predictors are used. They can be seen as a first sensitivity test of our main result, by accounting for various potential drivers of oil excess returns at the same time. We have run mainly two sets of multivariate regressions, with the constant term and/or with the excess return variable lagged one period.

Results are provided in Table 3. Overall, multivariate regressions confirm the strong explanatory power of VRP in our in-sample forecasting analysis. Indeed, the VRP is always strongly significant and negative in explaining oil excess returns, even when controlling for other potential significant explanatory variables such as $\Delta(stocks)$, ΔDEF , and excess returns (-1).

Finally, we notice that the adjusted R-squared of the multivariate regressions are comprised between 8% and 19%. This result is certainly interesting for the literature on oil price forecasts, where the random walk is still seen as a plausible model candidate. For our best specification, the adjusted R-squared turns out to be quite high, compared to other studies in this strand of literature (see Alquist et al. (2012) for a review).

To our best knowledge, the empirical finding that the difference between the modelfree implied and realized volatilities is able to explain a significant proportion of WTI crude oil excess returns is new, and complements that afforded by oil-specific and financial predictor variables.

Table 3: Multivariate regressions

Constant	1.1495***	1.4489***	1.3516***	1.2462***	1.5567***	1.1130***
	(2.5635)	(2.7668)	(2.6418)	(2.7151)	(2.9120)	(2.3732)
Excess return(-1)	0.2238***	0.3032**	0.1954**			
	(2.4996)	(2.1680)	(2.2209)			
VRP	-0.1487***	-0.2002***	-0.1712***	-0.1778***	-0.1909***	-0.1227**
	(-2.9357)	(-4.3851)	(-3.0945)	(-4.0512)	(-3.5914)	(-2.3516)
Δ (stocks)		-3.2739e-05*	-3.2598e-05*		-4.5523e-05**	
		(-1.8794)	(-1.9357)		(-2.4959)	
Δ DEF	-5.1246		-5.1101			-7.9179*
	(-1.5670)		(-1.5415)			(-1.9448)
Adj. R^2	0.1797	0.1683	0.1937	0.1545	0.0870	0.1503

Note: The endogenous variable is the monthly excess return for the WTI front-month futures contract traded on the NYMEX. The period is 2001:12-2010:12. The exogenous variables are defined in the Descriptive Statistics. The number of observations for each regression is 109. t-statistics are provided in parentheses below coefficiente estimates. ***, **, * denote statistical significance at respectively the 1%, 5%, and 10% levels.

3.4 Robustness checks

Besides multivariate regressions, we consider another kind of robustness check with the sub-sample decomposition. More precisely, we re-estimate our best econometric models during the sub-period 2006:06-2010-12. The idea behind this specification is to test whether the forecastability of the oil price based on the VRP is robust to the 2008 financial crisis.

Estimation results are given by Table 4. We remark that the central result of our paper holds, i.e. the VRP is consistently negative and statistically significant across regressions, even when accounting for the influence of the 2008 financial crisis. The resulting adjusted R-squared are even higher than in the previous set of regressions (up to 25%). As a consequence, we can conclude that our results are robust during the financial crisis period.

In light of our analysis, the VRP can be considered as a serious candidate as an oil price predictor in the econometric toolbox of practitioners and industry participants.

20

Constant

0.8145 1.0015 0.8944 0.9284 1.0740 0.7390

	(1.1736)	(1.3443)	(1.2553)	(1.2901)	(1.1773)	(0.9591)
Excess return(-1)	0.2898***	0.4131***	0.2706***			
	(2.5987)	(2.6584)	(2.4894)			
VRP	-0.1494***	-0.1817***	-0.1550***	-0.1759***	-0.1924***	-0.1322**
	(-2.3319)	(-3.0206)	(-2.3244)	(-3.0434)	(-2.8751)	(-2.0461)
Δ (stocks)		-2.2985e-05	-2.6656e-05		-3.7060e-05	
		(-0.9031)	(-1.0692)		(-1.3128)	
Δ DEF	-4.8700		-5.0763			-8.6356**
	(-1.4771)		(-1.5376)			(-2.0917)
Adj. R^2	0.2558	0.2298	0.2517	0.2370	0.0717	0.2149
	_				_	-

Table 4: Multivariate regressions during the sub-period 2006-2012

Note: The endogenous variable is the monthly excess return for the WTI front-month futures contract traded on the NYMEX. The period is 2006:06-2010-12. The exogenous variables are defined in the Descriptive Statistics. The number of observations for each regression is 109. t-statistics are provided in parentheses below coefficiente estimates. ***, **, * denote statistical significance at respectively the 1%, 5%, and 10% to the statistical significance at respectively the 1%, 5%, and 10% to the statistical significance at respectively the 1%, 5%, and 10% to the statistical significance at respectively the 1%, 5%, and 10% to the statistical significance at respectively the 1%, 5%, and 10% to the statistical significance at respectively the 1%, 5%, and 10% to the statistical significance at respectively the 1%, 5%, and 10% to the statistical significance at respectively the 1%, 5%, and 10% to the statistical significance at respectively the 1%, 5%, and 10% to the statistical significance at respectively the 1%, 5%, and 10% to the statistical significance at respectively the 1%, 5%, and 10% to the statistical significance at respectively the 1%, 5%, and 10% to the statistical significance at respectively the 1%, 5%, and 10% to the statistical significance at respectively the 1% to the statistical significance levels.

4 Conclusion

This paper establishes by means of multivariate regressions the predictive power of variance risk-premia for WTI light sweet crude oil excess returns. Variance risk-premia are computed as the difference between model-free implied and realized volatility measures (Bollerslev et al. (2009)). To date, the variance risk premium has been used in a number of studies to predict various quantities of interest.³

Along with a model-free measure of implied volatility, the realized volatility is used to compute the variance risk premium which is an indication of the risk premium for investors that exists to bear the variability of the variance in the oil market. As such, the variance risk premium is a premium dedicated to deal with the volatility-of-volatility risk, which is different from the standard volatility of returns that is a well-known concept in financial economics. The variance risk premium has proved its relevancy and importance in various contexts. In particular, it helps to predict stock returns but also participate in solving a number of existing puzzles in financial economics (see Bali and Zhou (2012)).

Besides, we consider various predictors for crude oil futures relating to macroeconomic, financial or oil-specific variables. The statistical influence of the VRP is consistently verified across all regressions. Other influences on crude oil futures excess returns stem from US oil stocks and the default spread. Using results from univariate regressions, we have estimated a number of multivariate regressions to increase the explanatory power of our in-sample forecasting analysis. By using sub-sample decomposition, we also show that our results are robust the 2008 financial crisis.

The bottom line of our analysis is that variance risk premia can be understood as a volatility which has not been priced accurately in the crude oil returns – either due to option mispricings or to large movements in the historical volatility – and they should be understood as a volatility series as well. This new volatility series can be readily replicated by fund managers, investors and market practitioners, and added to the econometric toolbox for forecasting crude oil prices. These results can be extended by assessing the predictive power of oil VRP for stock and bond returns.

³Christoffersen et al. (2012) provides an excellent survey of the empirical literature whose aim is to predict quantities using option-implied information. Among others are Bollerslev et al. (2009), Zhou (2009).

References

- ABOURA, S., CHEVALLIER, J., 2013. Leverage vs. Feedback: Which Effect Drives the Oil Market? *Finance Research Letters*, forthcoming.
- ALQUIST, R., KILIAN, L., 2010. What do we learn from the price of crude oil futures? *Journal of Applied Econometrics* 25, 539-573.
- ALQUIST, R., KILIAN, L., VIGFUSSON, R.J., 2012. Forecasting the price of oil. In: G. Elliott and A. Timmermann (Eds), *Handbook of Economic Forecasting 2*. Amsterdam: North-Holland, forthcoming.
- ANDERSEN, T.G., BOLLERSLEV, T., 1998. Answering the skeptics: yes, standard volatility models do provide accurate forecasts. International Economic Review 39, 885-905.
- ANDERSEN, T.G., BOLLERSLEV, T., CHRISTOFFERSEN, P.F., DIEBOLD, F.X., 2006. Volatility and correlation forecasting. In: G. Elliott, C.W.J. Granger and A. Timmermann, Handbook of Economic Forecasting (Chap. 15), vol. 2, Elsevier.
- ANDERSEN, T.G., BOLLERSLEV, T., DIEBOLD, F.X., LABYS, P., 2003. Modeling and forecasting realized volatility. *Econometrica* 71, 579-625.
- ARUOBA, S.B., DIEBOLD, F.X. AND SCOTTI, C., 2009, Real-Time Measurement of Business Conditions, *Journal of Business and Economic Statistics* 27, 417-427.
- BALI, T.G., ENGLE, R.F., 2010. The intertemporal capital asset pricing model with dynamic conditional correlations. *Journal of Monetary Economics* 57, 377-390.
- BALI, T.G., PENG, L., 2006. Is there a risk-return trade-off? Evidence from high frequency data. *Journal of Applied Econometrics* 21, 1169-1198.
- BAUMEISTER, C., KILIAN, L., 2012. Real-time forecasts of the real price of oil. *Journal of Business and Economic Statistics* 30, 326-336.
- BOLLERSLEV, T., TAUCHEN, G., ZHOU, H., 2009. Expected stock returns and variance risk premia. *Review of Financial Studies* 22, 4463-4492.
- CARR, P., Wu, L., 2009. Variance risk premiums. Review of Financial Studies 22, 1311-1341.
- CHEN, T.F., CHUNG, S.L., YUEH, M.L., 2011. Cross-section of option returns and coskewness risk. *SSRN Working Paper* #1917885. Social Science Research Network, USA.
- CHEVALLIER, J., 2013. Price relationships in crude oil futures: new evidence from CFTC disaggregated data. *Environmental Economics and Policy Studies* 15, 133-170.
- CHEVALLIER, J., SÉVI, B., 2012. On the volatility-volume relationship in energy futures markets using intraday data. *Energy Economics* 34, 1896-1909.
- CHRISTOFFERSEN, P.F., JACOBS, K., CHANG, B.Y., 2012. Forecasting with option implied information In: G. Elliot and A. Timmermann (Eds.), *Handbook of Economic Forecasting*, Elsevier, forthcoming.
- COLEMAN, L., 2012. Explaining crude oil prices using fundamental measures. Energy Policy 40, 318-324.
- CONRAD, C., LOCH, K., RITTLER, D., 2012. On the macroeconomic determinants of the long-term oil-stock correlation. Discussion Paper no. 525, March, University of Heidelberg.
- DE ROON, F.A., NIJMAN, T.E., VELD, C., 2000. Hedging pressure effects in futures markets. *Journal of Finance* 55, 1437-1456
- DIEBOLD, F.X., 2012. Comparing Predictive Accuracy, Twenty years later: A personal perspective on the use and abuse of Diebold-Mariano tests. *NBER Working Paper #* 18391, National Bureau of Economic Research, Massachusetts, USA.
- DORAN, J.S., RONN, E.I., 2008. Computing the market price of volatility risk in the energy commodity markets. *Journal of Banking and Finance* 32, 2541-2552.
- DRIESPRONG, G., JACOBSEN, B., MAAT, B., 2008. Striking oil: Another puzzle? *Journal of Financial Economics* 89, 307-327.
- FACKLER, P.L., KING, R.P., 1990. The Calibration of Option Based Probability Forecasts For Agricultural Commodity Prices. *American Journal of Agricultural Economics* 72, 73-83.
- GOSPODINOV, N., NG, S., 2013. Commodity Prices, Convenience Yields, and Inflation. *Review of Economics and Statistics* 95, 206-219.
- HAN, B., 2008. Investor sentiment and option prices. Review of Financial Studies 21, 387-414.
- Hog, E., TSIARAS, L., 2011. Density forecasts of crude oil prices using option-implied and ARCH-type models. *Journal of Futures Markets* 31, 727-754.

- HONG, H., YOGO, M., 2012. What does futures market interest tell us about the macroeconomy and asset prices? *Journal of Financial Economics* 105, 473-490.
- IELPO, F., SÉVI, B., 2012. The information content of implied volatility to forecasting the density of returns: Empirical evidence using the VIX. *Unpublished manuscript*.
- JIANG, G.J., TIAN, Y.S., 2005. The model-free implied volatility and its information content. *Review of Financial Studies* 18, 1305-1342.
- KAUFMANN, R.K., 2011. The role of market fundamentals and speculation in recent price changes for crude oil. *Energy Policy* 39, 105-115.
- KILIAN, L., 2009. Not all oil price shocks are alike: disentangling demand and supply shocks in the crude oil market. *American Economic Review* 99, 1053-1069.
- KNETSCH, T.A., 2007. Forecasting the price of oil via convenience yield predictions. *Journal of Forecasting* 26, 527-549.
- Kroner, K.F., Kneafsey, K.P., Claessens, S., 1995. Forecasting volatility in commodity markets. *Journal of Forecasting* 14, 77-95.
- LE PEN, Y., SÉVI, B., 2011. Macro factors in oil futures returns. International Economics 126-127, 151-174.
- LE PEN, Y., SÉVI, B., 2013. Futures trading and the excess comovement of commodity prices. Available at SSRN.
- LIU, L., PATTON, A.J., SHEPPARD, K., 2012. Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. Unpublished manuscript.
- MARTENS, M., ZEIN, J., 2004. Predicting financial volatility: high-frequency time-series forecasts vis-à-vis implied volatility. *Journal of Futures Markets* 24, 1005-1028.
- MELICK, W.R., THOMAS, C.P., 1997. Recovering an asset's implied pdf from option prices: an application to crude oil during the Gulf crisis. *Journal of Financial and Quantitative Analysis* 32, 91-115.
- SILVA, E.M.D.S., KAHL, K.H., 1993. Reliability of soybean and corn option-based probability assessments. *Journal of Futures Markets* 13, 765-779.
- TROLLE, A., SCHWARTZ, E.S., 2010. Variance Risk Premia in Energy Commodities. *Journal of Derivatives* 18, 1-18.
- ZAGAGLIA, P., 2010. Macroeconomic factors and oil futures prices: a data-rich model. *Energy Economics* 32, 409-417.
- ZHANG, L., MYKLAND, P.A., AIT-SAHALIA, Y., 2005. A tale of two time scales: determining integrated volatility with noisy high frequency data. *Journal of the American Statistical Association* 100, 1394-1411.
- ZHOU, H., 2009. Variance Risk Premia, Asset Predictability Puzzles, and Macroeconomic Uncertainty. *SSRN Working Paper* #1400049, USA.
- ZIVOT, E., WANG, J., 2005. Modelling Financial Time Series with S-PLUS, Second edition. Springer.

LISTE DES CAHIERS DE RECHERCHE CREDEN*

05 01 01	Factoms Francis Francis and Factions west the Cost Domand Structure as an Analytical
95.01.01	Eastern Europe Energy and Environment : the Cost-Reward Structure as an Analytical Framework in Policy Analysis
	Corazón M. SIDDAYAO
96.01.02	Insécurité des Approvisionnements Pétroliers, Effet Externe et Stockage Stratégique :
90.01.02	l'Aspect International
	Bernard SANCHEZ
96.02.03	R&D et Innovations Technologiques au sein d'un Marché Monopolistique d'une
30 .02.0 0	Ressource Non Renouvelable
	Jean-Christophe POUDOU
96.03.04	Un Siècle d'Histoire Nucléaire de la France
3000002	Henri PIATIER
97.01.05	Is the Netback Value of Gas Economically Efficient ?
37102100	Corazón M. SIDDAYAO
97.02.06	Répartitions Modales Urbaines, Externalités et Instauration de Péages : le cas des
37102100	Externalités de Congestion et des «Externalités Modales Croisées»
	François MIRABEL
97.03.07	Pricing Transmission in a Reformed Power Sector: Can U.S. Issues Be Generalized for
	Developing Countries
	Corazón M. SIDDAYAO
97.04.08	La Dérégulation de l'Industrie Electrique en Europe et aux Etats-Unis : un Processus de
	Décomposition-Recomposition
	Jacques PERCEBOIS
97.05.09	Externalité Informationnelle d'Exploration et Efficacité Informationnelle de
	l'Exploration Pétrolière
	Evariste NYOUKI
97.06.10	Concept et Mesure d'Equité Améliorée : Tentative d'Application à l'Option Tarifaire
	"Bleu-Blanc-Rouge" d'EDF
	Jérôme BEZZINA
98.01.11	Substitution entre Capital, Travail et Produits Energétiques : Tentative d'application
	dans un cadre international
00.00.10	Bachir EL MURR
98.02.12	L'Interface entre Secteur Agricole et Secteur Pétrolier : Quelques Questions au Sujet des
	Biocarburants
00 02 12	Alain MATHIEU
98.03.13	Les Effets de l'Intégration et de l'Unification Économique Européenne sur la Marge de Manœuvre de l'État Régulateur
	Agnès d'ARTIGUES
99.09.14	La Réglementation par Price Cap : le Cas du Transport de Gaz Naturel au Royaume Uni
99.09.14	Laurent DAVID
99.11.15	L'Apport de la Théorie Économique aux Débats Énergétiques
33.11.1 3	Jacques PERCEBOIS
99.12.16	Les biocombustibles : des énergies entre déclin et renouveau
33112120	Alain MATHIEU
00.05.17	Structure du marché gazier américain, réglementation et tarification de l'accès des tiers
	au réseau
	Laurent DAVID et François MIRABEL
00.09.18	Corporate Realignments in the Natural Gas Industry: Does the North American
	Experience Foretell the Future for the European Union ?
	Ian RUTLEDGE et Philip WRIGHT
00.10.19	La décision d'investissement nucléaire : l'influence de la structure industrielle
	Marie-Laure GUILLERMINET

 * L'année de parution est signalée par les deux premiers chiffres du numéro du cahier.

01.01.20	The industrialization of knowledge in life sciences Convergence between public research policies and industrial strategies
	Jean Pierre MIGNOT et Christian PONCET
01.02.21	Les enjeux du transport pour le gaz et l'électricité : la fixation des charges d'accès
	Jacques PERCEBOIS et Laurent DAVID
01.06.22	Les comportements de fraude fiscale : le face-à-face contribuables – Administration fiscale
	Cécile BAZART
01.06.23	La complexité du processus institutionnel de décision fiscale : causes et conséquences
	Cécile BAZART
01.09.24	Droits de l'homme et justice sociale. Une mise en perspective des apports de John Rawls
	et d'Amartya Sen
	David KOLACINSKI
01.10.25	Compétition technologique, rendements croissants et lock-in dans la production
	d'électricité d'origine solaire photovoltaïque
	Pierre TAILLANT
02.01.26	Harmonisation fiscale et politiques monétaires au sein d'une intégration économique
	Bachir EL MURR
02.06.27	De la connaissance académique à l'innovation industrielle dans les sciences du vivant :
	essai d'une typologie organisationnelle dans le processus d'industrialisation des
	connaissances
	Christian PONCET
02.06.28	Efforts d'innovations technologiques dans l'oligopole minier
	Jean-Christophe POUDOU
02.06.29	Why are technological spillovers spatially bounded? A market orientated approach
	Edmond BARANES et Jean-Philippe TROPEANO
02.07.30	Will broadband lead to a more competitive access market?
	Edmond BARANES et Yves GASSOT
02.07.31	De l'échange entre salaire et liberté chez Adam Smith au « salaire équitable » d'Akerlof
00.07.00	David KOLACINSKI
02.07.32	Intégration du marché Nord-Américain de l'énergie
00.07.00	Alain LAPOINTE
02.07.33	Funding for Universal Service Obligations in Electricity Sector: the case of green power
	development Paggal FAVARD François MIRAREL et Joan Christophe POLIDOLI
02.09.34	Pascal FAVARD, François MIRABEL et Jean-Christophe POUDOU Démocratie, croissance et répartition des libertés entre riches et pauvres
02.09.34	David KOLACINSKI
02.09.35	La décision d'investissement et son financement dans un environnement institutionnel
02.09.33	en mutation : le cas d'un équipement électronucléaire
	Marie-Laure GUILLERMINET
02.09.36	Third Party Access pricing to the network, secondary capacity market and economic
J =. JJ.JU	optimum: the case of natural gas
	Laurent DAVID et Jacques PERCEBOIS
03.10.37	Competition And Mergers In Networks With Call Externalities
	Edmond BARANES et Laurent FLOCHEL
03.10.38	Mining and Incentive Concession Contracts
	Nguyen Mahn HUNG, Jean-Christophe POUDOU et Lionel THOMAS
03.11.39	Une analyse économique de la structure verticale sur la chaîne gazière européenne
-	Edmond BARANES, François MIRABEL et Jean-Christophe POUDOU
03.11.40	Ouverture à la concurrence et régulation des industries de réseaux : le cas du gaz et de
	l'électricité. Quelques enseignements au vu de l'expérience européenne
	Jacques PERCEBOIS
03.11.41	•
00.11.41	Mechanisms of Funding for Universal Service Obligations: the Electricity Case
	François MIRABEL et Jean-Christophe POUDOU
02 11 42	
03.11.42	Stockage et Concurrence dans le secteur gazier Edmond BARANES, François MIRABEL et Jean-Christophe POUDOU

02 11 42	Constitution and Limiting A Nation
03.11.43	Cross Hedging and Liquidity: A Note Benoît SÉVI
04.01.44	The Competitive Firm under both Input and Output Price Uncertainties with Futures
0.110.1111	Markets and Basis risk
	Benoît SÉVI
04.05.45	Competition in health care markets and vertical restraints
	Edmond BARANES et David BARDEY
04.06.46	La Mise en Place d'un Marché de Permis d'Emission dans des Situations de Concurrence
	Imparfaite
	Olivier ROUSSE
04.07.47	Funding Universal Service Obligations with an Essential Facility: Charges vs. Taxes
	and subsidies, Charles MADET, Michel ROLAND, François MIRABEL et Jean-
	Christophe POUDOU
04.07.48	Stockage de gaz et modulation : une analyse stratégique,
	Edmond BARANES, François MIRABEL et Jean-Christophe POUDOU
04.08.49	Horizontal Mergers In Internet
04.40.50	Edmond BARANES et Thomas CORTADE
04.10.50	La promotion des énergies renouvelables : Prix garantis ou marché de certificats verts ?
04.10.51	Jacques PERCEBOIS Le Rôle des Permis d'Emission dans l'Exercice d'un Pouvoir de Marché sur les Marchés
04.10.31	de Gros de l'Electricité (La Stratégie de Rétention de Capacité
	Olivier ROUSSE
04.11.52	Consequences of electricity restructuring on the environment: A survey
	Benoît SÉVI
04.12.53	On the Exact Minimum Variance Hedge of an Uncertain Quantity with Flexibility
	Benoît SÉVI
05.01.54	Les biocarburants face aux objectifs et aux contraintes des politiques énergétiques et
	agricoles
	Alain MATHIEU
05.01.55	Structure de la concurrence sur la chaîne du gaz naturel : le marché européen
05.04.56	Vincent GIRAULT
05.04.56	L'approvisionnement gazier sur un marche oligopolistique : une analyse par la théorie économique
	Vincent GIRAULT
05.04.57	Les péages urbains pour une meilleure organisation des déplacements
03.04.37	François MIRABEL
05.04.58	Les biocombustibles en France : des produits fatals aux cultures dédiées
	Alain MATHIEU
05.07.59	Dérégulation et R&D dans le secteur énergétique européen
	Olivier GROSSE, Benoît SÉVI
05.09.60	Strategies of an incumbent constrained to supply entrants: the case of European gas
	release program
	Cédric CLASTRES et Laurent DAVID
06.01.61	Hydroélectricité : des mini-centrales aux barrages pharaoniques
06.02.62	Alain MATHIEU
06.02.62	L'internalisation de la congestion urbaine avec les instruments tarifaires :Acceptabilité
	et Décision Mathias REYMOND
06.02.63	Banking behavior under uncertainty: Evidence from the US Sulfur Dioxide Emissions
	Allowance Trading Program
	Olivier ROUSSE et Benoît SÉVI
06.03.64	Dépendance et vulnérabilité : deux façons connexes mais différentes d'aborder les
	risques énergétiques
06075	Jacques PERCEBOIS
06.05.65	Energies Renouvelables et Economie Solidaire
	Alain MATHIEU

06.10.66	Ventes Liées et Concurrence sur les Marchés Energétiques Marion PODESTA
07.01.67	Universal Service Obligations: The Role of Subsidization Schemes and the Consequences of Accounting Separation
	François MIRABEL, Jean-Christophe POUDOU et Michel ROLAND
07.01.68	Concentration des Marchés et Comportements Collusifs : des Conflits entre HHI et
	Seuils de Collusion
	Edmond BARANES, François MIRABEL et Jean-Christophe POUDOU
07.03.69	Certificats noirs, verts et blancs : Effets croisés et impacts potentiels dans les marchés de
	l'électricité ?
	Jacques PERCEBOIS
07.06.70	Les vertus environnementales et économiques de la participation des citoyens au marché
	de permis d'émission
07.06.71	Olivier ROUSSE
07.00.71	Les biocarburants : d'une génération à l'autre Alain MATHIEU
08.01.72	Les concessions de distribution d'énergie électrique en France se justifient-elles encore
00.01.72	aujourd'hui ?
	Henri COURIVAUD
08.02.73	Capital budgeting with an efficient yield-based method: the real rate of return technique
	Olivier ROUSSE
08.03.74	Strategic aspects of bundling
00 02 55	Marion PODESTA
08.03.75	Should the regulator allow citizens to participate in tradable permits markets? Olivier ROUSSE
08.04.76	Optimal nonlinear pricing, bundling commodities and contingent services
	Marion PODESTA et Jean-Christophe POUDOU
08.09.77	Volatility transmission and volatility impulse response functions in European electricity
	forward markets
	Yannick LE PEN et Benoît SÉVI
08.09.78	Accroissement de la capacité de transport électrique : investissement stratégique ? Renaud MENARD
08.12.79	On the non-convergence of energy intensities: evidence from a pair-wise econometric
	approach
	Yannick LE PEN et Benoît SÉVI
09.01.80	Minimum Operating Level Investissement dans le réseau électrique : une conciliation
	difficile Renaud MENARD
09.02.81	Prix internationaux du pétrole, du gaz naturel, de l'uranium et du charbon : la théorie
07.02.01	économique nous aide t-elle à comprendre les évolutions ?
	Jacques PERCEBOIS
09.02.82	Cooperation among liquefied natural gas suppliers: is rationalization the sole objective?
	Olivier MASSOL et Stéphane TCHUNG-MING
09.04.83	Investissement dans le réseau électrique : un moyen de lutte efficace contre les pouvoirs
	de marché des producteurs ?
09.05.84	Renaud MENARD On the realized volatility of the ECX CO ₂ emissions 2008 futures contract: distribution,
09.03.04	On the realized volatitity of the ECX CO_2 emissions 2008 futures contract: distribution, dynamics and forecasting
	Julien CHEVALLIER et Benoît SÉVI
09.07.85	Options introduction and volatility in the EU ETS
	Julien CHEVALLIER, Yannick LE PEN et Benoît SÉVI
09.09.86	Cost function for the natural gas transmission industry: further considerations
	Olivier MASSOL
10.07.87	La participation volontaire des citoyens sur le marché européen des permis d'émission
	de CO_2 : une évaluation contingente élargie à la psychologie environnementale
	Dorian LITVINE

11.02.88	Les tarifs d'achat stimulent-ils la production d'électricité renouvelable en France ?
110200	Critique du mode de fixation/indexation des tarifs H07 et de son impact sur l'installation
	de petites centrales hydrauliques
	Dorian LITVINE
11.03.89	Les tarifs d'achat stimulent-ils la production d'électricité renouvelable en France ?
	Identification de l'effet de seuil décourageant la rénovation des petites centrales
	hydrauliques
	Dorian LITVINE
11.03.90	Renewable energy in Réunion: potentials and outlook
	Julien BADDOUR et Jacques PERCEBOIS
11.04.91	Libéralisation du marché gazier et pouvoir de négociation
	Nicolas RIVIERE
11.04.92	On the volatility-volume relationship in energy futures markets using intraday data
	Julien CHEVALLIER et Benoît SÉVI
11.12.93	Export diversification and resource-based industrialization: the case of natural gas
	Olivier MASSOL et Albert BANAL-ESTAÑOL
12.03.94	Macro factors in oil futures returns
10 10 05	Yannick LE PEN et Benoît SÉVI
12.10.95	The French biofuels mandates under cost uncertainty
	An assessment based on robust optimization
12.11.96	Daphné LORNE et Stéphane TCHUNG-MING
12.11.90	On the stochastic properties of carbon futures prices Julien CHEVALLIER et Benoît SÉVI
12.11.97	Joining the CCS Club! Insights from a Northwest European CO ₂ pipeline project
12.11.97	Olivier MASSOL et Stéphane TCHUNG-MING
13.05.98	Les distorsions induites par les énergies intermittentes sur le marché spot de l'électricité
13.03.70	François BENHMAD et Jacques PERCEBOIS
13.09.99	La demande potentielle d'électricité verte chez les clients professionnels en Languedoc
20107177	Roussillon : Analyse de la désirabilité pour une offre de qualité
	Dorian LITVINE
13.09.100	Fundamental and financial influences on the co-movement of oil and gas prices
	Derek BUNN, Julien CHEVALLIER, Yannick LE PEN et Benoît SEVI
13.09.101	Economic assessment of R&D with real options in the field of fast reactors taking into
	account uncertainty on their competitiveness: the case of France
	Nathalie TAVERDET-POPIOLEK et Bianka SHOAI TEHRANI
13.09.102	The influence of proximity on the potential demand for vegetable oil as a diesel
	substitute: A rural survey in West Africa
	Dorian LITVINE, Marie-Hélène DABAT et Laurent GAZULL
13.09.103	A fear index to predict oil futures returns
	Julien CHEVALLIER et Benoît SEVI