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Abstract

This paper studies the design of a mining concession contract as a multi-

period autoselection problem where production is the depletion of a non renew-

able resource. As compared to symmetric information, we show that overpro-

duction (resp. underproduction) is optimal in the initial phase (resp. termi-

nal phase ) of the resource extraction program. Also, asymmetric information

lengthens the contract duration but reduces the scarcity rent. Finally, when

there are several agents competing for contract bid, we show that optimal

auctioning could be used to award the concession, assigning the lowest cost

agent to carry out the extraction.
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1 Introduction

The theory of mechanism design has made rapid advances over the last twenty years.

Standard results show that production is lower with asymmetric information than

with symmetric information in order to reduce the agent�s informational rent. This

conclusion can be generalized on several periods if the principal can commit itself

at the beginning of the relationship and the conditions (technology or preferences)

of the principal-agent relationship are time invariant.

In this paper, we analyze the particular case where the multi-period production

concerns a non renewable resource. More precisely, we study the impacts of in-

formational asymmetric context related to autoselection, when the time invariance

assumption is relaxed. Because of a dynamic exhaustibility constraint, this problem

can be referred to as the design of mining concession contracts: autoselection is

Þtted in the exhaustible resource management over time

In the informational framework above, quite a few earlier analyses exist in the

Þeld of natural resources economics. Noticeable are the study of Dynamic Taxation

with asymmetric information about reserves (Osmuden, 1998) and of Resource Roy-

alty Contract with asymmetric information about the extraction cost ( Gaudet G, P

Lasserre and NV Long, 1995). In short, these analyses have shown that asymmetric

information - more precisely, the adverse selection problem affecting cost efficiency

in Gaudet et al. and reserves in Osmundsen - involves distortions of both the extent

and the pace of resource depletion.

Among other results of interest, Gaudet et.al (op.cit) have shown that the opti-

mal royalty scheme will generate a distorted extraction which favors the earlier phase

of production less than under symmetric information, provided resource complete

exhaustion over the time horizon. The basic assumption adopted is that extraction

costs - the variable of adverse selection - are uncorrelated over time so that one can

use the revelation principle which is crucial in the analysis.

In this paper, we want to precise the direction of these distortions using a fairly

general model of dynamic adverse selection. Our work is much akin to Gaudet et.al,

except that we walk away from their basic assumption but aim at obtaining the
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same above result in a generalized context. First, as compared to the outcome

under symmetric information, we show that overproduction is optimal at the end

of the contract because the gains from exhaustibility dominate the rent loss under

asymmetric information. We also show that asymmetric information lengthens the

endogenous contract duration but reduces scarcity rent. Theses results are in some

sense non standard comparatively to the theory of mechanism design, but we ar-

gue that they could be interpreted as a simple �cost raising effect� in the resource

economics. Finally, we see that optimal auctioning could be an easy way to award

the concession contract, when there are several agents in bidding competition. We

show that selling by auction the concession leads to a efficient separation procedure

among agents so that the lowest cost agent is assigned to carry out the concession

contract.

The paper is organized as follows. In the next, we present the model and the

assumptions. In section 3, we derive the optimal concession contract with complete

and incomplete information. In section 4, we make a comparison of information con-

text and examine the issue of overproduction. In section 5, we discuss an auctioning

procedure to award the concession contract among potential agents (or operators).

Sections 6 concludes and 7 is devoted to the proofs of some Propositions.

2 The model

A principal is the owner of the non renewable resource stock S̄. It delegates the

extraction to a risk neutral agent on T periods. The agent�s cost function is:

θqt

with θ its constant efficiency and qt the extraction at time t, t = 0, 1, ..., T . The

principal�s surplus is a strictly concave function V (q) with V (0) = 0. The marginal

surplus V 0(q) = v(q) > 0 is decreasing so that ω ≡ v−1 exists and ω0(.) < 0. The

owner is not able to observe θ but has a prior belief summarized by the regular

density f(.) > 0 on
£
θ, θ̄
¤
. Regularity implies that F (.)/f(.) is non decreasing in θ,

where F (θ) =
R θ
θ
f(ε)dε. Note β, β < 1, is the discounting factor.
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We assume that the principal can commit itself on the T periods.1 Thus, it can

construct a credible mechanism. Such mechanism is function of the horizon of the

contract, that could be exogenous or endogenous. In the sequel, we focus on the more

general framework of an endogenous horizon of the contract. In this case, the horizon

of the contract must depend on the private information. The mechanism offered by

the principal is hYt(�θ), qt(�θ), T (�θ)i specifying for a report �θ, the monetary transfer
Yt(�θ) and the extraction qt(�θ) at time t, t = 0, 1, ..., T (�θ), where T (�θ) represents the

time at which the contract ends if the agent reports �θ. The utility of the agent

becomes:

U(�θ, θ) =

t=T (θ̂)X
t=0

βt
h
Yt(�θ)− θqt(�θ)

i
when its type is θ and it announces �θ. The individual rationality implies the agent

is not forced to contract, thus we must have:

U(θ) ≡ U(θ, θ) ≥ 0, ∀θ ∈ £θ, θ̄¤ (1)

where zero is the (normalized) agent�s utility of reservation. Moreover, the principal

must satisfy the incentive compatibility constraint which ensures truth-telling by

the agent. So:

U(θ, θ) ≥ U(θ, �θ), ∀θ, �θ ∈ £θ, θ̄¤ (2)

Finally, the agent can not extract more than the initial stock. It follows the ex-

haustibility constraint (hereafter EC):

t=T (θ)X
t=0

qt(θ) ≤ S̄,∀θ ∈
£
θ, θ̄
¤

(3)

The principal�s objective being to maximize the expected discounted sum of net

surplus, the problem is:

max
qt(.),Yt(.),T (.)

θ̄Z
θ

t=T (θ)X
t=0

βt [V (qt(θ))− Yt(θ)] f(θ)dθ (4)

1If there is no commitment, pooling equilibrium arises (see Laffont and Tirole, 1988). Further

discussion about this assumption is postponed until section 6, neverthless note that we abandon

the assumption of temporally uncorrelated costs made in Gaudet et.al (op.cit).
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subject to (1), (2) and (3). Determining feasible mechanisms typically (see appendix

A), relations (1) and (2) can be rewritten as:

U(θ̄) = 0 (1�)

U 0(θ) = −Q(θ) (2�)

Q0(θ) = βT (θ)qT (θ)(θ)T
0(θ) +

t=T (θ)X
t=0

βtq0t(θ) ≤ 0 (2�)

With Q(θ) =
t=T (θ)P
t=0

βtqt(θ). Note that y0t(θ) is the derivative of y with respect to

θ at the t period. After standard manipulations2, the problem becomes:

max
qt(.)

θ̄Z
θ

t=T (θ)X
t=0

βt [V (qt(θ))−K(θ)qt(θ)] f(θ)dθ (4�)

(4�) subject to: (2�) and (3), with K(θ) = θ + F (θ)
f(θ)
is non decreasing. In the adverse

selection literature K(θ) is known as the adjusted (unit and marginal) cost, which

includes the informational cost to the principal. More precisely, f(θ)
F (θ)

is the condi-

tional probability that efficiency is no more increasing (i.e. θ is falling) given that

there have already been an increase. Then the hazard rate (F (θ)
f(θ)
) can be interpreted

as the cost of screening the information about agent�s efficiency. Moreover, because

of the regularity assumption, this cost is increasing with inefficiency of the agent.

3 Optimal concession contract

If we ignore (in a Þrst step) the incentive compatibility constraint (2�), the problem

can be viewed as an optimal control one in discrete time, introducing St(θ) as the

state variable representing the current reserve of agent θ. As a consequence, relation

(3) can be also written as a motion equation:

∀θ ∈ £θ, θ̄¤ , ∀t ∈ {0, . . . , T (θ)} , St+1(θ)− St(θ) = −qt(θ) with S0(θ) = S̄ (3�)

2Using (1�) and (2�), U(θ) = U(θ) +
R θ̄
θ

t=T (θ)P
t=0

βtqt(ε)dε. In addition
t=TP
t=0

βtYt(θ) = U(θ) +

θ
t=T (θ)P
t=0

βtqt(θ). Substituting in (4) and integrating by parts yields (4�).
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Moreover at the terminal period the reserve can be exhausted or not, i.e. ST (θ)(θ) ≥ 0
. Optimizing point-wise over θ, the parameterized Hamiltonian of this problem is:

Ht(θ) = β
t [V (qt(θ))−K(θ)qt(θ)]− λt(θ)qt(θ)

where λt(θ) is the costate variable associated to St(θ) . Applying Pontryagin prin-

ciple in a discrete time version, we have necessary (and sufficient3) conditions for

qt(θ) ≥ 04, ∀t ∈ {0, . . . , T (θ)}:

∂Ht(θ)
∂qt(θ)

= 0

−∂Ht(θ)
∂St(θ)

= λt+1(θ)− λt(θ)
λT (θ)(θ)ST (θ)(θ) = 0

λT (θ)(θ) ≥ 0

⇔


v (qt(θ))−K(θ) = β−tλt(θ)
λt+1(θ)− λt(θ) = 0⇒ λt(θ) = λ(θ) ≥ 0
λ(θ)ST (θ)(θ) = 0

(5)

The Þrst relation in (5) is the usual Hotelling rule modiÞed to account for infor-

mational constraints. Hence production is chosen so that the net marginal surplus

corrected for the informational cost, must grow at the discount rate. The time-

invariant variable λ(θ) is called scarcity rent that is opportunity cost of one unit of

�ore� in ground.

Furthermore and because of an endogenous termination of the contract, this supple-

mentary Arrow�s type terminal condition must hold:

HT (θ)(θ) = 0⇔ βT (θ)
£
V (qT (θ)(θ))−K(θ)qT (θ)(θ)

¤− λ(θ)qT (θ)(θ) = 0

This terminal condition, which Þrst has been derived by Levari and Liviathan

(1977), implies that either the terminal extraction level is nil, qT (θ)(θ) = 0, or if

not (qT (θ)(θ) > 0), the discounted average surplus equals the scarcity rent at the end

of the contract, so should satisfy:

βT (θ)V (qT (θ)(θ))−K(θ)qT (θ)(θ)

qT (θ)

= λ(θ)

3Mangasarian sufficient conditions holds here because the discrete time Hamiltonian Ht(θ) is

concave (but not strictly) in (q, S) for all t. Indeed the hessian of Ht(θ) with respect to (q, S) is

negative semideÞnite because : ∂2Ht(θ)/∂qt(θ)
2 = βtv0(qt(θ)) < 0 and the determinant of that

hessian is zero.
4Indeed positive extraction is only possible if v(0) > K

¡
θ
¢
.
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However this latter case cannot arise. For, using (5), the above equation can be

rewritten as:

βT (θ)
h
V (qT (θ)(θ))−

³
v(qT (θ)(θ))− β−T (θ)λ(θ)

´
qT (θ)(θ)

i
− λ(θ)qT (θ) = 0

⇔ V (qT (θ)(θ))− v(qT (θ)(θ))qT (θ)(θ) = 0

By assumption put on V (x), V (x) − v(x)x is a non decreasing function of x and
equals 0 only iff x = 0.Thus qT (θ)(θ) = 0, and therefore T (θ) is such that :

λ(θ)

v (0)−K(θ) = β
T (θ) ⇔ T (θ) =

1

ln(β)
ln

µ
λ(θ)

v (0)−K(θ)
¶

(6)

This optimal stopping condition implies that the incentive compatibility constraint

(2�) can be rewritten now as:

Q0(θ) =
t=T (θ)X
t=0

βtq0t(θ) ≤ 0 (2��)

Finally, we prove now that exhaustion time and contract duration are concomitant.

Assume the contrary for all θ, i.e ST (θ) > 0 . Then λ(θ) = 0, ∀θ, and qt(θ) =
ω (K (θ)) 6= 0, for all t, a contradiction because the horizon cannot be not optimal
with qT (θ)(θ) 6= 0. It follows that ST (θ) = 0. Consequently, the exhaustibility

constraint (3) binds, that is
Pt=T (θ)

t=0 qt(θ) = S̄.

We can sum up these results in the following proposition.

Proposition 1 With incomplete information, the optimal production is such that

the modiÞed Hotelling rule applies and resource exhaustion takes place at the end of

the contract.

The incentive compatibility constraint (2��) is veriÞed in appendix B.

The complete information context can be derived as a particular case of propo-

sition 1.

Corollary 2 (Complete information) With complete information, the optimal

production is such that the standard Hotelling rule applies and resource exhaustion

takes place at the end of the contract.
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Proof. Indeed, if we put K(θ) ≡ θ,∀θ , that is collecting information about the
agent�s type is not costly (by assumption), we have from (5): v0 (qt(θ)) = θ+β−tλ(θ),

that is the standard Hotelling rule: net marginal surplus grows at the discount rate.

4 Comparison of information context

4.1 Non exhaustible benchmark case

We begin by recalling the standard results in the following lemma.

Lemma 3 (Baron and Besanko, 1984) In the non exhaustible case, at each pe-

riod, the optimal production with incomplete information is lesser (except at θ = θ)

than with complete information.

A �good� approximation of this benchmark case can be found using the condi-

tions (5) and (6) and setting down λ(θ) = 0, ∀θ , because physical resource scarcity
is irrelevant now. When there is commitment, the optimal static scheme with inex-

haustible resource is reiterated at each period (so horizon is inÞnite a priori). So,

with asymmetric information, the principal diminishes the Þrst-best quantity in or-

der to reduce the informational rent. If we note ∆q∗t (θ) = qc∗t (θ) − qi∗t (θ), where
superscripts c∗ and i∗ refer respectively to complete and incomplete information in

the inexhaustible case, we must have:

∆q∗t (θ) ≥ 0, t = 0, 1, . . . , T, (holding with equality at θ = θ)

. Indeed, from (5) and with λ(θ) = 0, ∀θ, qc∗t (θ) = ω (θ) ≥ qi∗t (θ) = ω (K (θ)) because
∀θ, K (θ) > θ.

4.2 Exhaustible resources

We return to the exhaustible case and we use c and i superscripts to refer respectively

to complete and incomplete information.
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Proposition 4 i) In the exhaustible case and for all θ ∈ ¤θ, θ̄¤:
λc(θ) ≥ λi(θ)

with equality holding only at θ = θ.

ii) Moreover, let ∆qt(θ) = qct (θ) − qit(θ) denote the extraction path differential
with respect to information context. Then it does exist a date τ (θ) such that:

∆qt(θ) ≥ 0, ∀t ∈ [0, τ (θ)] and ∆qt(θ) < 0,∀t ∈
¤
τ (θ),min

©
T i(θ), T c(θ)

ª¤
with equality holding at θ = θ.

iii) And Þnally,

T c(θ) ≤ T i(θ)
with equality holding only at θ = θ.

Proof. i) If the contrary is true, λc(θ) < λi(θ), we have:

K(θ) + β−tλi(θ) ≥ θ + β−tλc(θ)

and thus qct (θ) > q
i
t(θ) for t = 0, 1, . . . ,min {T i (θ) , T c (θ)} because ω(.) is decreasing.

This leads to the contradiction of the (binding) exhaustibility constraint:

S̄ =

t=T c(θ)X
t=0

qct (θ) >

t=T i(θ)X
t=0

qit(θ) = S̄

ii) Let us deÞne a date τ (θ) such that ∆qτ(θ) (θ) = 0:

τ (θ) =
1

ln (β)
ln

µ
λc(θ)− λi(θ)
K(θ)− θ

¶
For all θ ≥ θ , this date is unique and lying between 0 andmin {T i(θ), T c(θ)}. Indeed,
if τ (θ) > T i(θ) then ∆qt(θ) ≥ 0, ∀t, contradicting EC5. Similarly, if τ (θ) = 0 then
∆qt(θ) < 0, ∀t, and a same conclusion occurs.
iii) For the last part, if the contrary is true, T c(θ) > T i(θ) then ∆qT i(θ)(θ) =

qct (θ)− 0 > 0, contradicting the result of part ii). So T c (θ) ≤ T i (θ).6
5Actually, for all dates t such that t = τ(θ)− ε, ε > 0:

v (qct (θ))− v
¡
qit(θ)

¢ ⇔ θ + β−tλc(θ)− £K(θ) + β−tλi(θ)¤
⇔ (βε − 1) (K(θ)− θ) < 0

and the reverse for t = τ(θ) + ε, ε > 0. Hence since v0 < 0, qct (θ) ≷ qit(θ) if t ≶ τ(θ)
6Notice that this date is also anterior to T c (θ) . Hence min

©
T i(θ), T c(θ)

ª
= T c(θ). Indeed if it

was not the case (i.e. τ (θ) > T c (θ)), we would have the contradiction: ∆qT c(θ) (θ) = 0−qct (θ) < 0
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Scarcity rent or mining rent appears to be reduced because of asymmetric in-

formation. Accordingly, the principal is compelled to forgo some rents in order to

induce incentives in the contract, so its marginal evaluation of a unit of resource is

relatively lower than if it could pays zero rents. This is precisely what we propose

as a �raising cost� argument to interpret this mining rent reduction.

The contract duration is increased by adverse selection. In fact, if it is not the

case, some agents are not concerned by the terms of the contract given in Proposition

47 and the mechanism is then suboptimal. Indeed, prolonging the bilateral relation

is a �good� way to postpone rent disbursement. Intuitively, this is a logical and

direct consequence of the next result.

The main result is that for almost all agents overproduction arises at the end of

the contract when information is asymmetric. When the mine owner designs a non

renewable resource mining contract, he or she retains a double targets in the case

of asymmetric information. First, as the principal, the owner wants to reduce the

informational rent. But, second, he or she would also like to fully use the scarce

mining resource. The optimal policy puts these two effects in play in turn. In a Þrst

period (i.e. t ∈ [0, τ ]), the quantity extracted is lower, and so is the informational
rent. But in a second (i.e. t ∈ [τ , T ]), the principal prefers to exhaust its stock
rather than continue to reduce the rent. In this event, the quantity becomes greater

with asymmetric information, allowing the mine owner to recapture some of the

forgone earnings made in the initial periods. Actually from the τ period on, the

gains from exhaustibility dominate the rent loss.

This phenomenon can be reinterpreted as a simple result of extraction unit cost

increase. In non renewable resource economics, it is well known8 that an increase

in the marginal extraction cost reduces the discounted scarcity rent, increases the

exhaustion date and twists the extraction path. More precisely, the Hotelling�s

arbitrage principle tells us that the discounted marginal net surplus must be equal

at each period at the discounted scarcity rent. If marginal costs are higher, the

7For these agents the scarcity rent would be zero and production would be based only on K (θ),

so Hotelling rule would not apply.
8See J. Hartwick (1989), p. 37-38, for statics comparative results.
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discounted marginal net surplus is lower at each period, and so is the mining rent.

As a consequence, extraction is reduced in the initial periods but is increased in the

terminal ones, because of the optimality of exhausting completely the reserve. All

in all, the adverse selection problem could be reduced to a simple cost increase to

the principal through prospecting costly information.

5 Auctioning mining contract

In the previous section, it has been assumed that the mine owner (the principal)

is facing only one operator (the agent) who carries out the contract. But in most

of the real cases9, it can be observed some ex ante competition between potential

agents. In order to enlarge the scope of our model, we introduce auctioning to select

the �best� agent from the principal point of view. We show that by auctioning the

concession leads to a efficient separation procedure among agents so that the lowest

cost agent is assigned to carry out the mining contract.

Assume there are n risk-neutral agents, indexed by j, j = 1, 2, ..., n, who can

carry out the resource extraction. Each of them incurs an unit cost θj, a private

information issued independently from the random variable with density f(.) > 0

deÞned on
£
θ, θ̄
¤
. The mechanism becomes

D
Y jt (�θ), q

j
t (�θ), T

j(�θ), ρj(�θ)
E
specifying

for a vector of agents� report �θ = (�θ
1
, ..., �θ

j
, ..., �θ

n
) the monetary transfer Y jt (�θ),

the extraction rate qjt (�θ), at time t, t = 0, 1, ..., T j(.), the terminal date T j(�θ) and

the probability to wins the auction ρj(�θ) for agent j, j = 1, 2, ..., n. The incentive

compatibility, the individual rationality and the resource exhaustibility constraints

become respectively, for each j, j = 1, 2, ..., n with type θj and report �θ
j
, ∀θj, �θj ∈£

θ, θ̄
¤
, ∀�θ :

U j(θj, θj) ≥ U j(�θj, θj) = Eθ−j
t=T j(θ̂)X
t=0

βt
h
Y jt (�θ

j
, θ−j)− ρj(�θj , θ−j)θjqjt (�θ

j
, θ−j)

i
(7)

U i(θj) = U j(θj, θj) ≥ 0 (8)

9For example in hydrocarbon industrial sector, attribution of exploration-production contracts

are often submitted to auctions.
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t=T i(θ̂)X
t=0

qjt (�θ) ≤ S̄ (9)

where Eθ−j represents agent�s j expectations over θ
−j = (θ1, ..., θj−1, θj+1, ..., θn).

Moreover, we must satisfy the feasibility constraints (FC), ∀�θ:
j=nX
j=1

ρj(�θ) ≤ 1 and 0 ≤ ρj(�θ) ≤ 1, ∀j = 1, 2, ..., n (10)

The principal�s objective being to maximize the expected discounted sum of net

surplus, the problem is:

max
ρj(.),qjt (.),Y jt (.),T j(.)

Eθ

j=nX
i=1

t=T j(θ)X
t=0

βt
£
ρj(θ)V (qjt (θ))− Y jt (θ)

¤
(11)

where Eθ are the principal�s expectations over the n agents and θ = (θ
1, ..., θj , ..., θn)

subject to (7), (8), (9) and (10). Following similar arguments as before, we can show

that IC and IR are satisÞed if the following is true10:

qjt (.) and T
j(.) are only functions of θj

U j 0(θj) = −Eθ−jρj(θj, θ−j)Qj(θj) with Qj(θj) =
t=T j(θj)X
t=0

βtqjt (θ
j)

U j(θ̄) = 0

ρj(θj, θ−j) and Qj(θj) are decreasing in θj

Ignoring in a Þrst time the last relation, the problem can be rewritten:

max
ρj(.),qjt (.)

Eθ

j=nX
j=1

ρj(θ)

t=T j(θj)X
t=0

βt
£
V (qjt (θ

j))−K(θj)qjt (θj)
¤

with K(θj) = θj + F (θj)

f(θj)
.

It is clear that the problem can be decomposed in two steps. First is the maximiza-

tion with respect to qjt (.), second is the maximization with respect to ρ
j(θ).

Now, let W j(θj) the discounted sum of net �adjusted� surpluses if the agent j is

selected:

W j(θj) =

t=T j∗(θj)X
t=0

βt
£
V (qj∗t (θ

j))−K(θj)qj∗t (θj)
¤

10See Laffont and Tirole (1987) for the Þrst relation.
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Then, the second step of the problem reduces to:

(P)



max
ρj(.)

Eθ
j=nP
j=1

ρj(θ)W j(θj)

subject to:
j=nP
j=1

ρj(θ) ≤ 1 and 0 ≤ ρj(θ) ≤ 1

We now establish :

Proposition 5 i)The optimal contract is such that exhaustion occurs for all θj and:

qj∗t (θ
j) = ω

¡
K(θj) + β−tλj(θj)

¢
T j∗(θj) = 1

lnβ
ln
³

λj(θj)

v(0)−K(θj)

´
ii) The discounted sum of net �adjusted� surpluses if the agent j is selected, is

decreasing for all θj :

W j0(θj) < 0.

iii) And the award of the mining contract is such that:

ρj∗(θ) = 1 if θj = min
l
θl

ρj∗(θ) = 0 otherwise.

Proof. i) See proofs of the previous section. Using appendix B, it also can be

shown that Qj(θj) is decreasing in θj.

ii) This part helps solving the problem (P), see appendix C.
iii) We solve the problem (P). The Langrangean for agent j,j = 1, 2, ..., n, is:

Lj(θ) = Eθ
(
j=nX
j=1

ρj(θ)W j(θj) + µ(θ)(1−
j=nX
j=1

ρj(θ)) + δ̄
j
(θ)(1− ρj(θ)) + δj(θ)ρj(θ)

)

where δ̄j(θ),δj(θ) and µ(θ) are Kuhn and Tucker multipliers. Necessary conditions

are:

W j(θj)− µ(θ)− δ̄j(θ) + δj(θ) = 0

If there exists an agent j such that ρj(θj) = 1, then δj(θ) = 0 and:

W j(θj) ≥ µ(θ) ≥ 0

13



Since from lemma 2, W j(θj) is decreasing in θj, the proposition must hold and

ρj(θj, θ−j) is effectively (non continuously) decreasing in θj.

A glance at the Proposition 5 tells us that auctioning does not affect the design

of the concession contract. Indeed, Proposition 4 is still valid whatever efficient the

agent is, the contract structure remains identical. It is clear that auctioning yields to

a separation procedure among agents, in fact the separation property of the auction

theory applies here. In few words (see Laffont, Tirole (1993) p. 328 for details), the

separation property tells us �that the winner faces the same incentives as if there

had been no bidding competition�, ibid. The winner�s revelation strategy is then

unaffected by auctioning.11

Auctioning12 is an easy way to award the concession contract, when there is

several agents in competition. Selling by auction the concession leads to a efficient

separation procedure among agents so that the lowest cost agent is assigned to carry

out the concession contract. This result can be viewed as an application of Laffont

and Tirole (1987) analysis to exhaustible resource management problem when it is

solved using incentive contracts. The bilateral ex ante situation analyzed in sections

3 and 4 is then robust when agents compete to win the concession.

6 Extensions and conclusion

At least two central assumptions could be relaxed in our framework.

First it could be relevant to make a speciÞc assumption concerning the agent�s cost

function related to non renewable stylized facts. Second, we assume so far that the

principal can commit itself on all periods, in that case ex post inefficiency of the

contract can arise.
11In return its award is expected to be lesser, because alternative bidders simply reduce the

transfert given to the winner.
12Laffont, Tirole (1993) show that the implementation of these auctions by a dominant strategy

auction is possible. We could use the argument in our mining context.
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6.1 Stock effects and cost of depletion

In the exhaustible resources literature, it is well known (Livernois and Uhler, 1987)

that extraction costs are greatly inßuenced by stock effects. As long as the resource

is depleted, its stock in situ diminishes and extraction cost rises owing to the fact

that it becomes more and more difficult to dig. As pointed out in Osmundsen (1998),

this stock effect introduces the possibility for the agent (Þrms or operators) to learn

the level of in situ reserves and keeps it as private informations. Beside, with a very

general but drastic cost structure, Osmundsen shows that the overproduction result

is no longer valid. In fact, with his asymptotic assumption states that the cumulative

extraction costs approach inÞnity when the remaining resource base approaches zero,

it follows that exhaustibility constraint are non binding, henceforth the Baron and

Besanko result (see our lemma 1) applies for each period.

Using a less general stock effect model (e. g. linear), it could be possible13 to

reintroduce some overproduction in the last periods. Let θ(St) be a non decreasing

function which is bounded above by θ(0). Resource exhaustibility could also be

warranted by assuming θ(0) < v(0), that is, in resource economics, the choked-off

price exceeds the highest unit cost of extraction (of the most efficient agent). In this

case, the results so far obtained remain valid. Nevertheless, the impacts of stock

effects on the exhaustion date are more ambiguous.

6.2 Commitment and renegotiation

The central question of the principal commitment has been addressed in the litera-

ture14 we cite before. One problem in studying the dynamics of non renewable re-

source management is to obtain consistent paths in the principal-agent game (where

the principal is Stackelberg leader) so as to ensure the credibility of equilibrium

strategies. Gaudet et al. (1995) analyze a closed-loop royalties mechanism which

is renegotiation- proof, but they suppose that the efficiency parameters (i.e. the

types) are temporally independent so they brush aside the ratchet effect problem.

13See Poudou and Thomas (2000) for this point.
14Osmundsen (1998) assumes also commitment of the principal.
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In our work, we allow to consider this effect, but adopt the assumption of principal

long term commitment over the whole time horizon. Even though this assumption

points out an alternative way to reach the overproduction in later stage of resource

extraction under asymmetric information, the weakness resides in that ex-post in-

efficiency results and motivates the principal to renegotiate the terms of the mining

contract. The next step of this study should overcome this difficulty.

As a conclusion, this paper points out a non standard overproduction result

in incentive theory. Exhaustibility of the production resource reserve is the step-

ping stone: when the resource base is very scarce (the exhaustion happens in Þnite

time...), overproduction is optimal at the end of the contract because the gains

from exhaustibility dominate the informational rent loss, moreover these phenom-

ena lengthen the horizon of the contract but reduce mining rent.

7 Appendices

7.1 Appendix A: Feasible mechanisms

In order to simplify the developments, we suppose that T 0(θ) = limdθ→0
T (θ+dθ)−T (θ)

dθ

exists as a continuous application T 0 :
£
θ, θ̄
¤→ Z , so ∀θ ∈ £θ, θ̄¤ , T 0(θ) ∈ {−1, 0, 1}.

Incentive constraint (2) can be written as:

θ = arg max
θ̂∈[θ,θ̄]

U(�θ, θ)

which is equivalent to

1.

∂U(�θ, θ)

∂�θ |θ̂=θ
=

t=T (θ)X
t=0

βt [Y 0t (θ)− θq0t(θ)]+T 0(θ)
³
βT (θ)

£
YT (θ)(θ)− θqT (θ)(θ)

¤´
= 0

where T (θ) = T (θ) + T 0(θ) is also an optimal horizon due to the variation of
the type θ

2.
∂2U(�θ, θ)

∂�θ
2 |θ̂=θ

≤ 0
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Applying envelop theorem to the agent�s utility, we have:

∀θ ∈ £θ, θ̄¤ , U 0(θ) = − t=T (θ)X
t=0

βtqt(θ) ≡ −Q(θ) < 0 (A.1)

Moreover, totally differentiating ∂U(�θ, θ)/∂�θ|θ̂=θ = 0 leads to:

∂2U(�θ, θ)

∂�θ
2 |θ̂=θ

= −∂
2U(�θ, θ)

∂�θ∂θ |θ̂=θ
≤ 0

⇔ ∀θ ∈ £θ, θ̄¤ , Q0(θ) ≡ t=T (θ)X
t=0

βtq0t(θ) + T
0(θ)βT (θ)qT (θ)(θ) ≤ 0 (A.2)

Relations (A.1) and (A.2.) are incentive constraints (2�) and (2�) in the text.

These necessary conditions are also sufficient because U veriÞes the Spence-

Mirlees condition that is ∂2U /∂Q∂θ = −1 < 0.

7.2 Appendix B: IC2 checking

Because of the optimal horizon condition (recall: qT (θ) = 0 ), checking (2��) or (A.2)

just above, comes to verify:

Q0(θ) ≤ 0⇔
t=T (θ)X
t=0

βtq0t(θ) ≤ 0 (B.1)

From (5), computing q0t(θ) gives for all periods:

q0t(θ) = ω
0 ¡K(θ) + β−tλ(θ)¢ £K 0 (θ) + β−tλ0(θ)

¤
(B.2)

A glance at (B.2) show us that it does a date t0 (θ) such that

∀t S t0 (θ)⇔ q0t(θ) S 0

Indeed and because ω0(·) < 0,

q0t0(θ)(θ) = ω0
¡
v
¡
qt0(θ)(θ)

¢¢ h
K 0 (θ) + β−t0(θ)λ0(θ)

i
= 0

⇔ t0 (θ) =
1

ln(β)
ln

µ
− λ

0 (θ)
K 0(θ)

¶
For the moment we just assume that 0 < t0 (θ) < T (θ), for all θ.

>From the binding exhaustibility constraint (and qT (θ) = 0) we can derive that:

t=T (θ)X
t=0

q0t(θ) = 0⇔ −
t=t0(θ)X
t=0

q0t(θ) =
t=T (θ)X
t=t0(θ)

q0t(θ) > 0 (B.3)
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Then using (B.3), the mean theorem can be apply to (B.1) for each relevant interval,

that is:
t=T (θ)X
t=0

βtq0t(θ) = β
t1

t=t0(θ)X
t=0

q0t(θ) + β
t2

t=T (θ)X
t=t0(θ)

q0t(θ)

where t1 ∈ ]0, t0 (θ)[ and t2 ∈ ]t0 (θ) , T (θ)[, so t1 < t2. So if 0 < t0 (θ) < T (θ), this
Þnishes the IC2 checking:

t=T (θ)X
t=0

βtq0t(θ) =
¡
βt2 − βt1¢ t=T (θ)X

t=t0(θ)

q0t(θ) < 0 (B.4)

because t2 > t1 so β
t2 − βt1 < 0.

Finally let us prove that 0 < t0 (θ) < T (θ), for all θ. From (B.3) and using again the

mean theorem, we can derive that:

t=T (θ)X
t=0

ω0 (v (qt(θ)))
£
K 0 (θ) + β−tλ0(θ)

¤
= 0⇒ λ0(θ) = −K 0(θ)

t=T (θ)P
t=0

ω0 (v (qt(θ)))

t=T (θ)P
t=0

β−tω0 (v (qt(θ)))

< 0

⇔ λ0(θ) = −K 0(θ)βt3 < 0 (B.5)

with t3 ∈ ]0, T (θ)[ . This last relation shows us that − λ0(θ)
K0(θ) = β

t3 < 1 so t0 (θ) > 0

for all θ. More from (B.2) and (B.5):

q0T (θ)(θ) = ω0 (v(0))
h
K 0 (θ) + β−T (θ)λ0(θ)

i
= ω0 (v(0))K 0 (θ)

h
1− βt3−T (θ)

i
> 0 (B.6)

So if t0 (θ) ≥ T (θ), then q0T (θ)(θ) < 0 which contradicts (B.6) then t0 (θ) < T (θ), so

IC2 is checked.

As an extension of this proof, we can now see that T 0(θ) > 0. >From (6) in the text

and (B.5):

T 0(θ) =
1

ln(β)

·
1

v (0)−K(θ)
¸
[λ0 (θ) (v (0)−K(θ)) + λ (θ)K 0(θ)]

= βt3K 0(θ) [ln(β) (v (0)−K(θ))]−1 £β−t3λ (θ)− (v (0)−K(θ))¤
Using (6) again implies:

T 0(θ) = λ (θ)K 0(θ) [ln(β) (v (0)−K(θ))]−1
h
1− βt3−T (θ)

i
> 0 (B.7)
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7.3 Appendix C: Proof of Proposition 5

First, let us proof that W j(θj) is decreasing in θj.

W j0(θj) =

t=T j∗(θj)X
t=0

βt
£
v
¡
(qj∗t (θ

j)
¢−K(θj)¤ qj∗0t (θj)−K 0(θj)

t=T j∗(θj)X
t=0

βtqj∗t (θ
j) +(C.1)

+T j∗0(θj)
h
V
³
qj∗T j∗(θj)

(θj)
´
−K(θj)qj∗T j∗(θj)

(θj)
i

where T j∗(θj) = T j∗(θj)+T j∗0(θj) is also an optimal horizon due to the variation of
the type θj . From previous results, we know that qj∗T j∗(θj)

(θj) = 0 so V
³
qj∗T j∗(θj)

(θj)
´
−

K(θj)qj∗T j∗(θj)
(θj) = 0. Moreover from the proposition 4, we know that exhaustion

occurs for all j, so
t=T j∗(θj)P

t=0

qj∗t (θ
j) = S and

d

dθ

t=T j∗(θj)X
t=0

qj∗t (θ
j)

 =
dS

dθ

⇔
t=T j∗(θj)X

t=0

qj∗0t (θ
j) + T j∗0(θj)qj∗T j∗(θj)

(θj) = 0

⇔
t=T j∗(θj)X

t=0

qj∗0t (θ
j) = 0

Hence (12) becomes:

W j0(θj) = λj(θj)

t=T j∗(θj)X
t=0

qj∗0t (θ
j)−K 0(θj)

t=T j∗(θj)X
t=0

βtqj∗t (θ
j)

= −K 0(θj)βetj∗(θj)S < 0

where etj∗(θj) ∈ ¤0, T j∗(θj)£ .
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